[Skip to Content]
[Skip to Content Landing]

Screening for Obstructive Sleep Apnea in AdultsUpdated Evidence Report and Systematic Review for the US Preventive Services Task Force

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Obstructive sleep apnea (OSA) is associated with adverse health outcomes.

Objective  To review the evidence on screening for OSA in asymptomatic adults or those with unrecognized OSA symptoms to inform the US Preventive Services Task Force.

Data Sources  PubMed/MEDLINE, Cochrane Library, Embase, and trial registries through August 23, 2021; surveillance through September 23, 2022.

Study Selection  English-language studies of screening test accuracy, randomized clinical trials (RCTs) of screening or treatment of OSA reporting health outcomes or harms, and systematic reviews of treatment reporting changes in blood pressure and apnea-hypopnea index (AHI) scores.

Data Extraction and Synthesis  Dual review of abstracts, full-text articles, and study quality. Meta-analysis of intervention trials.

Main Outcomes and Measures  Test accuracy, excessive daytime sleepiness, sleep-related and general health–related quality of life (QOL), and harms.

Results  Eighty-six studies were included (N = 11 051). No study directly compared screening with no screening. Screening accuracy of the Multivariable Apnea Prediction score followed by unattended home sleep testing for detecting severe OSA syndrome (AHI ≥30 and Epworth Sleepiness Scale [ESS] score >10) measured as the area under the curve in 2 studies (n = 702) was 0.80 (95% CI, 0.78 to 0.82) and 0.83 (95% CI, 0.77 to 0.90). Five studies assessing the accuracy of other screening tools were heterogeneous and results were inconsistent. Compared with inactive control, positive airway pressure was associated with a significant improvement in ESS score from baseline (pooled mean difference, −2.33 [95% CI, −2.75 to −1.90]; 47 trials; n = 7024), sleep-related QOL (standardized mean difference, 0.30 [95% CI, 0.19 to 0.42]; 17 trials; n = 3083), and general health–related QOL measured by the 36-Item Short Form Health Survey (SF-36) mental health component summary score change (pooled mean difference, 2.20 [95% CI, 0.95 to 3.44]; 15 trials; n = 2345) and SF-36 physical health component summary score change (pooled mean difference, 1.53 [95% CI, 0.29 to 2.77]; 13 trials; n = 2031). Use of mandibular advancement devices was also associated with a significantly larger ESS score change compared with controls (pooled mean difference, −1.67 [95% CI, 2.09 to −1.25]; 10 trials; n = 1540). Reporting of other health outcomes was sparse; no included trial found significant benefit associated with treatment on mortality, cardiovascular events, or motor vehicle crashes. In 3 systematic reviews, positive airway pressure was significantly associated with reduced blood pressure; however, the difference was relatively small (2-3 mm Hg).

Conclusions and Relevance  The accuracy and clinical utility of OSA screening tools that could be used in primary care settings were uncertain. Positive airway pressure and mandibular advancement devices reduced ESS score. Trials of positive airway pressure found modest improvement in sleep-related and general health–related QOL but have not established whether treatment reduces mortality or improves most other health outcomes.

Sign in to take quiz and track your certificates

Buy This Activity
Our websites may be periodically unavailable between 12:00am CT March 25, 2023 and 4:00pm CT March 26, 2023 for regularly scheduled maintenance.

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Cynthia Feltner, MD, MPH, Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, 725 Martin Luther King Jr Blvd, CB#7295, Chapel Hill, NC 27599 (cindy_feltner@med.unc.edu).

Accepted for Publication: September 19, 2022.

Author Contributions: Dr Feltner had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Feltner, Wallace, Hicks, Voisin, Jonas.

Acquisition, analysis, or interpretation of data: Feltner, Wallace, Aymes, Cook Middleton, Hicks, Schwimmer, Baker, Balio, Moore, Jonas.

Drafting of the manuscript: Feltner, Wallace, Aymes, Cook Middleton, Hicks, Schwimmer, Baker, Moore, Voisin, Jonas.

Critical revision of the manuscript for important intellectual content: Feltner, Wallace, Hicks, Balio, Jonas.

Statistical analysis: Feltner, Wallace, Aymes, Hicks.

Obtained funding: Feltner, Jonas.

Administrative, technical, or material support: Feltner, Cook Middleton, Schwimmer, Baker, Moore, Voisin, Jonas.

Supervision: Feltner, Jonas.

Conflict of Interest Disclosures: Dr Aymes reported receiving a Health Resources and Services Administration Preventive Medicine Training Grant. No other disclosures were reported.

Funding/Support: This research was funded under contract HHSA-75Q80120D00007, Task Order 01, from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services, under a contract to support the US Preventive Services Task Force (USPSTF).

Role of the Funder/Sponsor: Investigators worked with USPSTF members and AHRQ staff to develop the scope, analytic framework, and key questions for this review. AHRQ had no role in study selection, quality assessment, or synthesis. AHRQ staff provided project oversight, reviewed the evidence review to ensure that the analysis met methodological standards, and distributed the draft for public comment and review by federal partners. Otherwise, AHRQ had no role in the conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript findings. The opinions expressed in this document are those of the authors and do not reflect the official position of AHRQ or the US Department of Health and Human Services.

Additional Contributions: We gratefully acknowledge the following individuals for their contributions to this project, including AHRQ staff (Justin Mills, MD, MPH, and Tracy Wolff, MD, MPH) and RTI International–University of North Carolina–Chapel Hill Evidence-based Practice Center (EPC) staff (Carol Woodell, BSPH, Roberta Wines, MPH, Staci Rachman, BA, Sharon Barrell, MA, Loraine Monroe, and Teyonna Downing). The USPSTF members, expert reviewers, and federal partner reviewers did not receive financial compensation for their contributions. Ms Woodell, Ms Wines, Ms Rachman, Ms Barrell, Ms Monroe, and Ms Downing received compensation for their role in this project.

Additional Information: A draft version of the full evidence review underwent external peer review from 3 content experts (Sean M. Caples, DO, MS, Mayo Clinic; Jon-Erik C. Holty, MD, MS, Stanford University; Paul E. Peppard, PhD, MS, University of Wisconsin-Madison) and 5 federal partner reviewers (Centers for Disease Control and Prevention; National Institute of Dental and Craniofacial Research; National Heart, Lung, and Blood Institute; National Institute on Minority Health and Health Disparities; and National Institutes of Health Office of Research on Women’s Health). Comments from reviewers were presented to the USPSTF during its deliberation of the evidence and were considered in preparing the final evidence review. USPSTF members and peer reviewers did not receive financial compensation for their contributions.

Editorial Disclaimer: This evidence review is presented as a document in support of the accompanying USPSTF recommendation statement. It did not undergo additional peer review after submission to JAMA.

References
1.
Osman  AM , Carter  SG , Carberry  JC , Eckert  DJ .  Obstructive sleep apnea: current perspectives.   Nat Sci Sleep. 2018;10:21-34. doi:10.2147/NSS.S124657PubMedGoogle ScholarCrossref
2.
Faber  J , Faber  C , Faber  AP .  Obstructive sleep apnea in adults.   Dental Press J Orthod. 2019;24(3):99-109. doi:10.1590/2177-6709.24.3.099-109.sarPubMedGoogle ScholarCrossref
3.
Veasey  SC , Rosen  IM .  Obstructive sleep apnea in adults.   N Engl J Med. 2019;380(15):1442-1449. doi:10.1056/NEJMcp1816152PubMedGoogle ScholarCrossref
4.
Benjafield  AV , Ayas  NT , Eastwood  PR ,  et al.  Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.   Lancet Respir Med. 2019;7(8):687-698. doi:10.1016/S2213-2600(19)30198-5PubMedGoogle ScholarCrossref
5.
Peppard  PE , Young  T , Barnet  JH , Palta  M , Hagen  EW , Hla  KM .  Increased prevalence of sleep-disordered breathing in adults.   Am J Epidemiol. 2013;177(9):1006-1014. doi:10.1093/aje/kws342PubMedGoogle ScholarCrossref
6.
Bixler  EO , Vgontzas  AN , Lin  HM ,  et al.  Prevalence of sleep-disordered breathing in women: effects of gender.   Am J Respir Crit Care Med. 2001;163(3 Pt 1):608-613. doi:10.1164/ajrccm.163.3.9911064PubMedGoogle ScholarCrossref
7.
Bixler  EO , Vgontzas  AN , Ten Have  T , Tyson  K , Kales  A .  Effects of age on sleep apnea in men, I: prevalence and severity.   Am J Respir Crit Care Med. 1998;157(1):144-148. doi:10.1164/ajrccm.157.1.9706079PubMedGoogle ScholarCrossref
8.
Young  T , Shahar  E , Nieto  FJ ,  et al; Sleep Heart Health Study Research Group.  Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study.   Arch Intern Med. 2002;162(8):893-900. doi:10.1001/archinte.162.8.893PubMedGoogle ScholarCrossref
9.
Balk  EM , Moorthy  D , Obadan  NO ,  et al.  Diagnosis and Treatment of Obstructive Sleep Apnea in Adults. Agency for Healthcare Research and Quality; 2011.
10.
Knauert  M , Naik  S , Gillespie  MB , Kryger  M .  Clinical consequences and economic costs of untreated obstructive sleep apnea syndrome.   World J Otorhinolaryngol Head Neck Surg. 2015;1(1):17-27. doi:10.1016/j.wjorl.2015.08.001PubMedGoogle ScholarCrossref
11.
Bibbins-Domingo  K , Grossman  DC , Curry  SJ ,  et al; US Preventive Services Task Force.  Screening for obstructive sleep apnea in adults: US Preventive Services Task Force recommendation statement.   JAMA. 2017;317(4):407-414. doi:10.1001/jama.2016.20325PubMedGoogle ScholarCrossref
12.
US Preventive Services Task Force. US Preventive Services Task Force Procedure Manual. Updated May 2021. Accessed October 11, 2022. https://www.uspreventiveservicestaskforce.org/uspstf/procedure-manual
13.
Feltner  C , Jonas  DE , Wallace  I , Aymes  S , Hicks  K , Cook Middleton  J .  Screening for Obstructive Sleep Apnea in Adults: an Evidence Review for the US Preventive Services Task Force. Evidence Synthesis No. 220. Agency for Healthcare Research and Quality; 2022. AHRQ publication 22-05292-EF-1.
14.
 Human Development Report 2020: The Next Frontier: Human Development and the Anthropocene. United Nations Development Program; 2020.
15.
Whiting  PF , Rutjes  AW , Westwood  ME ,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.   Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009PubMedGoogle ScholarCrossref
16.
Shea  BJ , Grimshaw  JM , Wells  GA ,  et al.  Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews.   BMC Med Res Methodol. 2007;7:10. doi:10.1186/1471-2288-7-10PubMedGoogle ScholarCrossref
17.
West  SL , Gartlehner  G , Mansfield  AJ ,  et al. Comparative Effectiveness Review Methods: Clinical Heterogeneity. Report 10-EHC070-EF. Agency for Healthcare Research and Quality. Published 2010. Accessed October 11, 2022. https://pubmed.ncbi.nlm.nih.gov/21433337/
18.
StataCorp. StataCorp LP; 2019.
19.
Higgins  JP , Thompson  SG .  Quantifying heterogeneity in a meta-analysis.   Stat Med. 2002;21(11):1539-1558. doi:10.1002/sim.1186PubMedGoogle ScholarCrossref
20.
Higgins  JP , Thompson  SG , Deeks  JJ , Altman  DG .  Measuring inconsistency in meta-analyses.   BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557PubMedGoogle ScholarCrossref
21.
Higgins  J , Thomas  J , Chandler  J ,  et al. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3. Cochrane. Published 2022. Accessed October 11, 2022. https://training.cochrane.org/handbook
22.
Hrubos-Strøm  H , Randby  A , Namtvedt  SK ,  et al.  A Norwegian population-based study on the risk and prevalence of obstructive sleep apnea: the Akershus Sleep Apnea Project (ASAP).   J Sleep Res. 2011;20(1, pt 2):162-170. doi:10.1111/j.1365-2869.2010.00861.xPubMedGoogle ScholarCrossref
23.
Morales  CR , Hurley  S , Wick  LC ,  et al.  In-home, self-assembled sleep studies are useful in diagnosing sleep apnea in the elderly.   Sleep. 2012;35(11):1491-1501. doi:10.5665/sleep.2196PubMedGoogle ScholarCrossref
24.
Gurubhagavatula  I , Fields  BG , Morales  CR ,  et al.  Screening for severe obstructive sleep apnea syndrome in hypertensive outpatients.   J Clin Hypertens (Greenwich). 2013;15(4):279-288. doi:10.1111/jch.12073PubMedGoogle ScholarCrossref
25.
Edmonds  PJ , Gunasekaran  K , Edmonds  LC .  Neck grasp predicts obstructive sleep apnea in type 2 diabetes mellitus.   Sleep Disord. 2019;2019:3184382. doi:10.1155/2019/3184382PubMedGoogle ScholarCrossref
26.
Jorge  C , Benítez  I , Torres  G ,  et al.  The STOP-Bang and Berlin questionnaires to identify obstructive sleep apnoea in Alzheimer’s disease patients.   Sleep Med. 2019;57:15-20. doi:10.1016/j.sleep.2019.01.033PubMedGoogle ScholarCrossref
27.
Shin  C , Baik  I .  Evaluation of a modified STOP-BANG questionnaire for sleep apnea in adults from the Korean general population.   Sleep Med Res. 2021;12(1):28-35. doi:10.17241/smr.2020.00808Google ScholarCrossref
28.
Selvanathan  J , Waseem  R , Peng  P , Wong  J , Ryan  CM , Chung  F .  Simple screening model for identifying the risk of sleep apnea in patients on opioids for chronic pain.   Reg Anesth Pain Med. 2021;46(10):886-891. doi:10.1136/rapm-2020-102388PubMedGoogle ScholarCrossref
29.
Netzer  NC , Stoohs  RA , Netzer  CM , Clark  K , Strohl  KP .  Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome.   Ann Intern Med. 1999;131(7):485-491. doi:10.7326/0003-4819-131-7-199910050-00002PubMedGoogle ScholarCrossref
30.
Chung  F , Yegneswaran  B , Liao  P ,  et al.  STOP questionnaire: a tool to screen patients for obstructive sleep apnea.   Anesthesiology. 2008;108(5):812-821. doi:10.1097/ALN.0b013e31816d83e4PubMedGoogle ScholarCrossref
31.
Farney  RJ , Walker  BS , Farney  RM , Snow  GL , Walker  JM .  The STOP-Bang equivalent model and prediction of severity of obstructive sleep apnea: relation to polysomnographic measurements of the apnea/hypopnea index.   J Clin Sleep Med. 2011;7(5):459-65B. doi:10.5664/JCSM.1306PubMedGoogle ScholarCrossref
32.
Maislin  G , Pack  AI , Kribbs  NB ,  et al.  A survey screen for prediction of apnea.   Sleep. 1995;18(3):158-166. doi:10.1093/sleep/18.3.158PubMedGoogle ScholarCrossref
33.
Lloyd-Jones  DM .  Cardiovascular risk prediction: basic concepts, current status, and future directions.   Circulation. 2010;121(15):1768-1777. doi:10.1161/CIRCULATIONAHA.109.849166PubMedGoogle ScholarCrossref
34.
Hosmer  DW , Lemeshow  S .  Applied Logistic Regression. John Wiley & Sons; 2000. doi:10.1002/0471722146
35.
de Vries  GE , Wijkstra  PJ , Houwerzijl  EJ , Kerstjens  HAM , Hoekema  A .  Cardiovascular effects of oral appliance therapy in obstructive sleep apnea: a systematic review and meta-analysis.   Sleep Med Rev. 2018;40:55-68. doi:10.1016/j.smrv.2017.10.004PubMedGoogle ScholarCrossref
36.
Labarca  G , Schmidt  A , Dreyse  J ,  et al.  Efficacy of continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) and resistant hypertension (RH): systematic review and meta-analysis.   Sleep Med Rev. 2021;58:101446. doi:10.1016/j.smrv.2021.101446PubMedGoogle ScholarCrossref
37.
Patil  SP , Ayappa  IA , Caples  SM , Kimoff  RJ , Patel  SR , Harrod  CG .  Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment.   J Clin Sleep Med. 2019;15(2):301-334. doi:10.5664/jcsm.7638PubMedGoogle ScholarCrossref
38.
Zhang  D , Luo  J , Qiao  Y , Xiao  Y .  Continuous positive airway pressure therapy in non-sleepy patients with obstructive sleep apnea: results of a meta-analysis.   J Thorac Dis. 2016;8(10):2738-2747. doi:10.21037/jtd.2016.09.40PubMedGoogle ScholarCrossref
39.
Arias  MA , García-Río  F , Alonso-Fernández  A , Mediano  O , Martínez  I , Villamor  J .  Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men.   Circulation. 2005;112(3):375-383. doi:10.1161/CIRCULATIONAHA.104.501841PubMedGoogle ScholarCrossref
40.
Barbé  F , Mayoralas  LR , Duran  J ,  et al.  Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness: a randomized, controlled trial.   Ann Intern Med. 2001;134(11):1015-1023. doi:10.7326/0003-4819-134-11-200106050-00007PubMedGoogle ScholarCrossref
41.
Campos-Rodriguez  F , Grilo-Reina  A , Perez-Ronchel  J ,  et al.  Effect of continuous positive airway pressure on ambulatory BP in patients with sleep apnea and hypertension: a placebo-controlled trial.   Chest. 2006;129(6):1459-1467. doi:10.1378/chest.129.6.1459PubMedGoogle ScholarCrossref
42.
Chasens  ER , Korytkowski  M , Sereika  SM , Burke  LE , Drumheller  OJ , Strollo  PJ  Jr .  Improving activity in adults with diabetes and coexisting obstructive sleep apnea.   West J Nurs Res. 2014;36(3):294-311. doi:10.1177/0193945913500567PubMedGoogle ScholarCrossref
43.
Chong  MS , Ayalon  L , Marler  M ,  et al.  Continuous positive airway pressure reduces subjective daytime sleepiness in patients with mild to moderate Alzheimer’s disease with sleep disordered breathing.   J Am Geriatr Soc. 2006;54(5):777-781. doi:10.1111/j.1532-5415.2006.00694.xPubMedGoogle ScholarCrossref
44.
Coughlin  SR , Mawdsley  L , Mugarza  JA , Wilding  JP , Calverley  PM .  Cardiovascular and metabolic effects of CPAP in obese males with OSA.   Eur Respir J. 2007;29(4):720-727. doi:10.1183/09031936.00043306PubMedGoogle ScholarCrossref
45.
Durán-Cantolla  J , Aizpuru  F , Montserrat  JM ,  et al; Spanish Sleep and Breathing Group.  Continuous positive airway pressure as treatment for systemic hypertension in people with obstructive sleep apnoea: randomised controlled trial.   BMJ. 2010;341:c5991. doi:10.1136/bmj.c5991PubMedGoogle ScholarCrossref
46.
Egea  CJ , Aizpuru  F , Pinto  JA ,  et al; Spanish Group of Sleep Breathing Disorders.  Cardiac function after CPAP therapy in patients with chronic heart failure and sleep apnea: a multicenter study.   Sleep Med. 2008;9(6):660-666. doi:10.1016/j.sleep.2007.06.018PubMedGoogle ScholarCrossref
47.
Haensel  A , Norman  D , Natarajan  L , Bardwell  WA , Ancoli-Israel  S , Dimsdale  JE .  Effect of a 2 week CPAP treatment on mood states in patients with obstructive sleep apnea: a double-blind trial.   Sleep Breath. 2007;11(4):239-244. doi:10.1007/s11325-007-0115-0PubMedGoogle ScholarCrossref
48.
Hoyos  CM , Killick  R , Yee  BJ , Phillips  CL , Grunstein  RR , Liu  PY .  Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study.   Thorax. 2012;67(12):1081-1089. doi:10.1136/thoraxjnl-2011-201420PubMedGoogle ScholarCrossref
49.
Hui  DS , To  KW , Ko  FW ,  et al.  Nasal CPAP reduces systemic blood pressure in patients with obstructive sleep apnoea and mild sleepiness.   Thorax. 2006;61(12):1083-1090. doi:10.1136/thx.2006.064063PubMedGoogle ScholarCrossref
50.
Jenkinson  C , Davies  RJ , Mullins  R , Stradling  JR .  Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial.   Lancet. 1999;353(9170):2100-2105. doi:10.1016/S0140-6736(98)10532-9PubMedGoogle ScholarCrossref
51.
Hack  M , Davies  RJ , Mullins  R ,  et al.  Randomised prospective parallel trial of therapeutic versus subtherapeutic nasal continuous positive airway pressure on simulated steering performance in patients with obstructive sleep apnoea.   Thorax. 2000;55(3):224-231. doi:10.1136/thorax.55.3.224PubMedGoogle ScholarCrossref
52.
Jones  A , Vennelle  M , Connell  M ,  et al.  The effect of continuous positive airway pressure therapy on arterial stiffness and endothelial function in obstructive sleep apnea: a randomized controlled trial in patients without cardiovascular disease.   Sleep Med. 2013;14(12):1260-1265. doi:10.1016/j.sleep.2013.08.786PubMedGoogle ScholarCrossref
53.
Kushida  CA , Nichols  DA , Holmes  TH ,  et al.  Effects of continuous positive airway pressure on neurocognitive function in obstructive sleep apnea patients: the Apnea Positive Pressure Long-term Efficacy Study (APPLES).   Sleep. 2012;35(12):1593-1602. doi:10.5665/sleep.2226PubMedGoogle ScholarCrossref
54.
Batool-Anwar  S , Goodwin  JL , Kushida  CA ,  et al.  Impact of continuous positive airway pressure (CPAP) on quality of life in patients with obstructive sleep apnea (OSA).   J Sleep Res. 2016;25(6):731-738. doi:10.1111/jsr.12430PubMedGoogle ScholarCrossref
55.
Lam  JC , Lam  B , Yao  TJ ,  et al.  A randomised controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea.   Eur Respir J. 2010;35(1):138-145. doi:10.1183/09031936.00047709PubMedGoogle ScholarCrossref
56.
Lee  IS , Bardwell  WA , Kamat  R ,  et al.  A model for studying neuropsychological effects of sleep intervention: the effect of 3-week continuous positive airway pressure treatment.   Drug Discov Today Dis Models. 2011;8(4):147-154. doi:10.1016/j.ddmod.2011.10.001PubMedGoogle ScholarCrossref
57.
Loredo  JS , Ancoli-Israel  S , Kim  EJ , Lim  WJ , Dimsdale  JE .  Effect of continuous positive airway pressure versus supplemental oxygen on sleep quality in obstructive sleep apnea: a placebo-CPAP-controlled study.   Sleep. 2006;29(4):564-571. doi:10.1093/sleep/29.4.564PubMedGoogle ScholarCrossref
58.
Marshall  NS , Neill  AM , Campbell  AJ , Sheppard  DS .  Randomised controlled crossover trial of humidified continuous positive airway pressure in mild obstructive sleep apnoea.   Thorax. 2005;60(5):427-432. doi:10.1136/thx.2004.032078PubMedGoogle ScholarCrossref
59.
Melehan  KL , Hoyos  CM , Hamilton  GS ,  et al.  Randomized trial of CPAP and vardenafil on erectile and arterial function in men with obstructive sleep apnea and erectile dysfunction.   J Clin Endocrinol Metab. 2018;103(4):1601-1611. doi:10.1210/jc.2017-02389PubMedGoogle ScholarCrossref
60.
Montserrat  JM , Ferrer  M , Hernandez  L ,  et al.  Effectiveness of CPAP treatment in daytime function in sleep apnea syndrome: a randomized controlled study with an optimized placebo.   Am J Respir Crit Care Med. 2001;164(4):608-613. doi:10.1164/ajrccm.164.4.2006034PubMedGoogle ScholarCrossref
61.
Neikrug  AB , Liu  L , Avanzino  JA ,  et al.  Continuous positive airway pressure improves sleep and daytime sleepiness in patients with Parkinson disease and sleep apnea.   Sleep. 2014;37(1):177-185. doi:10.5665/sleep.3332PubMedGoogle ScholarCrossref
62.
Nguyen  PK , Katikireddy  CK , McConnell  MV , Kushida  C , Yang  PC .  Nasal continuous positive airway pressure improves myocardial perfusion reserve and endothelial-dependent vasodilation in patients with obstructive sleep apnea.   J Cardiovasc Magn Reson. 2010;12:50. doi:10.1186/1532-429X-12-50PubMedGoogle ScholarCrossref
63.
Pepperell  JC , Ramdassingh-Dow  S , Crosthwaite  N ,  et al.  Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial.   Lancet. 2002;359(9302):204-210. doi:10.1016/S0140-6736(02)07445-7PubMedGoogle ScholarCrossref
64.
Kohler  M , Pepperell  JC , Casadei  B ,  et al.  CPAP and measures of cardiovascular risk in males with OSAS.   Eur Respir J. 2008;32(6):1488-1496. doi:10.1183/09031936.00026608PubMedGoogle ScholarCrossref
65.
Phillips  CL , Yee  BJ , Marshall  NS , Liu  PY , Sullivan  DR , Grunstein  RR .  Continuous positive airway pressure reduces postprandial lipidemia in obstructive sleep apnea: a randomized, placebo-controlled crossover trial.   Am J Respir Crit Care Med. 2011;184(3):355-361. doi:10.1164/rccm.201102-0316OCPubMedGoogle ScholarCrossref
66.
Robinson  GV , Smith  DM , Langford  BA , Davies  RJ , Stradling  JR .  Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients.   Eur Respir J. 2006;27(6):1229-1235. doi:10.1183/09031936.06.00062805PubMedGoogle ScholarCrossref
67.
Siccoli  MM , Pepperell  JC , Kohler  M , Craig  SE , Davies  RJ , Stradling  JR .  Effects of continuous positive airway pressure on quality of life in patients with moderate to severe obstructive sleep apnea: data from a randomized controlled trial.   Sleep. 2008;31(11):1551-1558. doi:10.1093/sleep/31.11.1551PubMedGoogle ScholarCrossref
68.
Smith  LA , Vennelle  M , Gardner  RS ,  et al.  Auto-titrating continuous positive airway pressure therapy in patients with chronic heart failure and obstructive sleep apnoea: a randomized placebo-controlled trial.   Eur Heart J. 2007;28(10):1221-1227. doi:10.1093/eurheartj/ehm131PubMedGoogle ScholarCrossref
69.
Weaver  TE , Mancini  C , Maislin  G ,  et al.  Continuous positive airway pressure treatment of sleepy patients with milder obstructive sleep apnea: results of the CPAP Apnea Trial North American Program (CATNAP) randomized clinical trial.   Am J Respir Crit Care Med. 2012;186(7):677-683. doi:10.1164/rccm.201202-0200OCPubMedGoogle ScholarCrossref
70.
West  SD , Nicoll  DJ , Wallace  TM , Matthews  DR , Stradling  JR .  Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes.   Thorax. 2007;62(11):969-974. doi:10.1136/thx.2006.074351PubMedGoogle ScholarCrossref
71.
West  SD , Kohler  M , Nicoll  DJ , Stradling  JR .  The effect of continuous positive airway pressure treatment on physical activity in patients with obstructive sleep apnoea: a randomised controlled trial.   Sleep Med. 2009;10(9):1056-1058. doi:10.1016/j.sleep.2008.11.007PubMedGoogle ScholarCrossref
72.
Ballester  E , Badia  JR , Hernández  L ,  et al.  Evidence of the effectiveness of continuous positive airway pressure in the treatment of sleep apnea/hypopnea syndrome.   Am J Respir Crit Care Med. 1999;159(2):495-501. doi:10.1164/ajrccm.159.2.9804061PubMedGoogle ScholarCrossref
73.
Banghøj  AM , Krogager  C , Kristensen  PL ,  et al.  Effect of 12-week continuous positive airway pressure therapy on glucose levels assessed by continuous glucose monitoring in people with type 2 diabetes and obstructive sleep apnoea: a randomized controlled trial.   Endocrinol Diabetes Metab. 2020;4(2):e00148. doi:10.1002/edm2.148PubMedGoogle ScholarCrossref
74.
Barbé  F , Durán-Cantolla  J , Capote  F ,  et al; Spanish Sleep and Breathing Group.  Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea.   Am J Respir Crit Care Med. 2010;181(7):718-726. doi:10.1164/rccm.200901-0050OCPubMedGoogle ScholarCrossref
75.
Barbé  F , Durán-Cantolla  J , Sánchez-de-la-Torre  M ,  et al; Spanish Sleep and Breathing Network.  Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial.   JAMA. 2012;307(20):2161-2168. doi:10.1001/jama.2012.4366PubMedGoogle ScholarCrossref
76.
Barnes  M , McEvoy  RD , Banks  S ,  et al.  Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea.   Am J Respir Crit Care Med. 2004;170(6):656-664. doi:10.1164/rccm.200311-1571OCPubMedGoogle ScholarCrossref
77.
Campos-Rodriguez  F , Queipo-Corona  C , Carmona-Bernal  C ,  et al; Spanish Sleep Network.  Continuous positive airway pressure improves quality of life in women with obstructive sleep apnea: a randomized controlled trial.   Am J Respir Crit Care Med. 2016;194(10):1286-1294. doi:10.1164/rccm.201602-0265OCPubMedGoogle ScholarCrossref
78.
Craig  SE , Kohler  M , Nicoll  D ,  et al.  Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial.   Thorax. 2012;67(12):1090-1096. doi:10.1136/thoraxjnl-2012-202178PubMedGoogle ScholarCrossref
79.
Dalmases  M , Solé-Padullés  C , Torres  M ,  et al.  Effect of CPAP on cognition, brain function, and structure among elderly patients with OSA: a randomized pilot study.   Chest. 2015;148(5):1214-1223. doi:10.1378/chest.15-0171PubMedGoogle ScholarCrossref
80.
Engleman  HM , Martin  SE , Deary  IJ , Douglas  NJ .  Effect of continuous positive airway pressure treatment on daytime function in sleep apnoea/hypopnoea syndrome.   Lancet. 1994;343(8897):572-575. doi:10.1016/S0140-6736(94)91522-9PubMedGoogle ScholarCrossref
81.
Engleman  HM , Martin  SE , Deary  IJ , Douglas  NJ .  Effect of CPAP therapy on daytime function in patients with mild sleep apnoea/hypopnoea syndrome.   Thorax. 1997;52(2):114-119. doi:10.1136/thx.52.2.114PubMedGoogle ScholarCrossref
82.
Engleman  HM , Martin  SE , Kingshott  RN , Mackay  TW , Deary  IJ , Douglas  NJ .  Randomised placebo controlled trial of daytime function after continuous positive airway pressure (CPAP) therapy for the sleep apnoea/hypopnoea syndrome.   Thorax. 1998;53(5):341-345. doi:10.1136/thx.53.5.341PubMedGoogle ScholarCrossref
83.
Engleman  HM , Kingshott  RN , Wraith  PK , Mackay  TW , Deary  IJ , Douglas  NJ .  Randomized placebo-controlled crossover trial of continuous positive airway pressure for mild sleep apnea/hypopnea syndrome.   Am J Respir Crit Care Med. 1999;159(2):461-467. doi:10.1164/ajrccm.159.2.9803121PubMedGoogle ScholarCrossref
84.
Faccenda  JF , Mackay  TW , Boon  NA , Douglas  NJ .  Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome.   Am J Respir Crit Care Med. 2001;163(2):344-348. doi:10.1164/ajrccm.163.2.2005037PubMedGoogle ScholarCrossref
85.
Gottlieb  DJ , Punjabi  NM , Mehra  R ,  et al.  CPAP versus oxygen in obstructive sleep apnea.   N Engl J Med. 2014;370(24):2276-2285. doi:10.1056/NEJMoa1306766PubMedGoogle ScholarCrossref
86.
Lewis  EF , Wang  R , Punjabi  N ,  et al.  Impact of continuous positive airway pressure and oxygen on health status in patients with coronary heart disease, cardiovascular risk factors, and obstructive sleep apnea: a Heart Biomarker Evaluation in Apnea Treatment (HEARTBEAT) analysis.   Am Heart J. 2017;189:59-67. doi:10.1016/j.ahj.2017.03.001PubMedGoogle ScholarCrossref
87.
Jackson  ML , Tolson  J , Schembri  R ,  et al.  Does continuous positive airways pressure treatment improve clinical depression in obstructive sleep apnea? a randomized wait-list controlled study.   Depress Anxiety. 2021;38(5):498-507. doi:10.1002/da.23131PubMedGoogle ScholarCrossref
88.
Jackson  ML , Tolson  J , Bartlett  D , Berlowitz  DJ , Varma  P , Barnes  M .  Clinical depression in untreated obstructive sleep apnea: examining predictors and a meta-analysis of prevalence rates.   Sleep Med. 2019;62:22-28. doi:10.1016/j.sleep.2019.03.011PubMedGoogle ScholarCrossref
89.
Lam  B , Sam  K , Mok  WY ,  et al.  Randomised study of three non-surgical treatments in mild to moderate obstructive sleep apnoea.   Thorax. 2007;62(4):354-359. doi:10.1136/thx.2006.063644PubMedGoogle ScholarCrossref
90.
Lim  W , Bardwell  WA , Loredo  JS ,  et al.  Neuropsychological effects of 2-week continuous positive airway pressure treatment and supplemental oxygen in patients with obstructive sleep apnea: a randomized placebo-controlled study.   J Clin Sleep Med. 2007;3(4):380-386. doi:10.5664/jcsm.26860PubMedGoogle ScholarCrossref
91.
Lui  MMS , Mak  JCW , Chong  PWC , Lam  DCL , Ip  MSM .  Circulating adipocyte fatty acid-binding protein is reduced by continuous positive airway pressure treatment for obstructive sleep apnea—a randomized controlled study.   Sleep Breath. 2020;24(3):817-824. doi:10.1007/s11325-019-01893-5PubMedGoogle ScholarCrossref
92.
Martínez-García  MA , Capote  F , Campos-Rodríguez  F ,  et al; Spanish Sleep Network.  Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial.   JAMA. 2013;310(22):2407-2415. doi:10.1001/jama.2013.281250PubMedGoogle ScholarCrossref
93.
Martínez-García  MÁ , Chiner  E , Hernández  L ,  et al; Spanish Sleep Network.  Obstructive sleep apnoea in the elderly: role of continuous positive airway pressure treatment.   Eur Respir J. 2015;46(1):142-151. doi:10.1183/09031936.00064214PubMedGoogle ScholarCrossref
94.
Masa  JF , Corral  J , Alonso  ML ,  et al; Spanish Sleep Network.  Efficacy of different treatment alternatives for obesity hypoventilation syndrome: Pickwick Study.   Am J Respir Crit Care Med. 2015;192(1):86-95. doi:10.1164/rccm.201410-1900OCPubMedGoogle ScholarCrossref
95.
McArdle  N , Douglas  NJ .  Effect of continuous positive airway pressure on sleep architecture in the sleep apnea-hypopnea syndrome: a randomized controlled trial.   Am J Respir Crit Care Med. 2001;164(8 Pt 1):1459-1463. doi:10.1164/ajrccm.164.8.2008146PubMedGoogle ScholarCrossref
96.
McMillan  A , Bratton  DJ , Faria  R ,  et al; PREDICT Investigators.  Continuous positive airway pressure in older people with obstructive sleep apnoea syndrome (PREDICT): a 12-month, multicentre, randomised trial.   Lancet Respir Med. 2014;2(10):804-812. doi:10.1016/S2213-2600(14)70172-9PubMedGoogle ScholarCrossref
97.
Peker  Y , Glantz  H , Eulenburg  C , Wegscheider  K , Herlitz  J , Thunström  E .  Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea: the RICCADSA randomized controlled trial.   Am J Respir Crit Care Med. 2016;194(5):613-620. doi:10.1164/rccm.201601-0088OCPubMedGoogle ScholarCrossref
98.
Balcan  B , Thunström  E , Strollo  PJ  Jr , Peker  Y .  Continuous positive airway pressure treatment and depression in adults with coronary artery disease and nonsleepy obstructive sleep apnea: a secondary analysis of the RICCADSA Trial.   Ann Am Thorac Soc. 2019;16(1):62-70. doi:10.1513/AnnalsATS.201803-174OCPubMedGoogle ScholarCrossref
99.
Celik  Y , Thunström  E , Strollo  PJ  Jr , Peker  Y .  Continuous positive airway pressure treatment and anxiety in adults with coronary artery disease and nonsleepy obstructive sleep apnea in the RICCADSA trial.   Sleep Med. 2021;77:96-103. doi:10.1016/j.sleep.2020.11.034PubMedGoogle ScholarCrossref
100.
Ponce  S , Pastor  E , Orosa  B ,  et al; Sleep Respiratory Disorders Group of the Sociedad Valenciana de Neumología.  The role of CPAP treatment in elderly patients with moderate obstructive sleep apnoea: a multicentre randomised controlled trial.   Eur Respir J. 2019;54(2):1900518. doi:10.1183/13993003.00518-2019PubMedGoogle ScholarCrossref
101.
Redline  S , Adams  N , Strauss  ME , Roebuck  T , Winters  M , Rosenberg  C .  Improvement of mild sleep-disordered breathing with CPAP compared with conservative therapy.   Am J Respir Crit Care Med. 1998;157(3, pt 1):858-865. doi:10.1164/ajrccm.157.3.9709042PubMedGoogle ScholarCrossref
102.
Ruttanaumpawan  P , Gilman  MP , Usui  K , Floras  JS , Bradley  TD .  Sustained effect of continuous positive airway pressure on baroreflex sensitivity in congestive heart failure patients with obstructive sleep apnea.   J Hypertens. 2008;26(6):1163-1168. doi:10.1097/HJH.0b013e3282fb81edPubMedGoogle ScholarCrossref
103.
Kaneko  Y , Floras  JS , Usui  K ,  et al.  Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea.   N Engl J Med. 2003;348(13):1233-1241. doi:10.1056/NEJMoa022479PubMedGoogle ScholarCrossref
104.
Salord  N , Fortuna  AM , Monasterio  C ,  et al.  A randomized controlled trial of continuous positive airway pressure on glucose tolerance in obese patients with obstructive sleep apnea.   Sleep. 2016;39(1):35-41. doi:10.5665/sleep.5312PubMedGoogle ScholarCrossref
105.
Shaw  JE , Punjabi  NM , Naughton  MT ,  et al.  The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes.   Am J Respir Crit Care Med. 2016;194(4):486-492. doi:10.1164/rccm.201511-2260OCPubMedGoogle ScholarCrossref
106.
Tomfohr  LM , Ancoli-Israel  S , Loredo  JS , Dimsdale  JE .  Effects of continuous positive airway pressure on fatigue and sleepiness in patients with obstructive sleep apnea: data from a randomized controlled trial.   Sleep. 2011;34(1):121-126. doi:10.1093/sleep/34.1.121PubMedGoogle ScholarCrossref
107.
Wimms  AJ , Kelly  JL , Turnbull  CD ,  et al; MERGE Trial Investigators.  Continuous positive airway pressure versus standard care for the treatment of people with mild obstructive sleep apnoea (MERGE): a multicentre, randomised controlled trial.   Lancet Respir Med. 2020;8(4):349-358. doi:10.1016/S2213-2600(19)30402-3PubMedGoogle ScholarCrossref
108.
Zhao  YY , Wang  R , Gleason  KJ ,  et al; BestAIR Investigators.  Effect of continuous positive airway pressure treatment on health-related quality of life and sleepiness in high cardiovascular risk individuals with sleep apnea: Best Apnea Interventions for Research (BestAIR) trial.   Sleep. 2017;40(4):zsx040. doi:10.1093/sleep/zsx040PubMedGoogle ScholarCrossref
109.
Ng  SSS , Chan  TO , To  KW ,  et al.  Continuous positive airway pressure for obstructive sleep apnoea does not improve asthma control.   Respirology. 2018;23(11):1055-1062. doi:10.1111/resp.13363PubMedGoogle ScholarCrossref
110.
Celik  Y , Yapici-Eser  H , Balcan  B , Peker  Y .  Association of excessive daytime sleepiness with the Zung self-rated depression subscales in adults with coronary artery disease and obstructive sleep apnea.   Diagnostics (Basel). 2021;11(7):1176. doi:10.3390/diagnostics11071176PubMedGoogle ScholarCrossref
111.
Traaen  GM , Aakerøy  L , Hunt  TE ,  et al.  Effect of continuous positive airway pressure on arrhythmia in atrial fibrillation and sleep apnea: a randomized controlled trial.   Am J Respir Crit Care Med. 2021;204(5):573-582. doi:10.1164/rccm.202011-4133OCPubMedGoogle ScholarCrossref
112.
Wallström  S , Balcan  B , Thunström  E , Wolf  A , Peker  Y .  CPAP and health-related quality of life in adults with coronary artery disease and nonsleepy obstructive sleep apnea in the RICCADSA trial.   J Clin Sleep Med. 2019;15(9):1311-1320. doi:10.5664/jcsm.7926PubMedGoogle ScholarCrossref
113.
Weinstock  TG , Wang  X , Rueschman  M ,  et al.  A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea.   Sleep. 2012;35(5):617-625B. doi:10.5665/sleep.1816PubMedGoogle ScholarCrossref
114.
Patel  S , Kon  SSC , Nolan  CM ,  et al.  The Epworth Sleepiness Scale: minimum clinically important difference in obstructive sleep apnea.   Am J Respir Crit Care Med. 2018;197(7):961-963. doi:10.1164/rccm.201704-0672LEPubMedGoogle ScholarCrossref
115.
Crook  S , Sievi  NA , Bloch  KE ,  et al.  Minimum important difference of the Epworth Sleepiness Scale in obstructive sleep apnoea: estimation from three randomised controlled trials.   Thorax. 2019;74(4):390-396. doi:10.1136/thoraxjnl-2018-211959PubMedGoogle ScholarCrossref
116.
Ware  JE  Jr , Sherbourne  CD .  The MOS 36-item short-form health survey (SF-36), I: conceptual framework and item selection.   Med Care. 1992;30(6):473-483. doi:10.1097/00005650-199206000-00002PubMedGoogle ScholarCrossref
117.
Wyrwich  KW , Tierney  WM , Babu  AN , Kroenke  K , Wolinsky  FD .  A comparison of clinically important differences in health-related quality of life for patients with chronic lung disease, asthma, or heart disease.   Health Serv Res. 2005;40(2):577-591. doi:10.1111/j.1475-6773.2005.0l374.xPubMedGoogle ScholarCrossref
118.
Weaver  TE , Crosby  RD , Bron  M , Menno  D , Mathias  SD .  Using multiple anchor-based and distribution-based estimates to determine the Minimal Important Difference (MID) for the FOSQ-10.   Sleep. 2018;41(suppl 1):A227. doi:10.1093/sleep/zsy061.611Google ScholarCrossref
119.
Flemons  WW , Reimer  MA .  Development of a disease-specific health-related quality of life questionnaire for sleep apnea.   Am J Respir Crit Care Med. 1998;158(2):494-503. doi:10.1164/ajrccm.158.2.9712036PubMedGoogle ScholarCrossref
120.
Aarab  G , Lobbezoo  F , Hamburger  HL , Naeije  M .  Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnea: a randomized, placebo-controlled trial.   Respiration. 2011;81(5):411-419. doi:10.1159/000319595PubMedGoogle ScholarCrossref
121.
Nikolopoulou  M , Aarab  G , Ahlberg  J , Hamburger  HL , de Lange  J , Lobbezoo  F .  Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnea: a randomized, placebo-controlled trial on temporomandibular side-effects.   Clin Exp Dent Res. 2020;6(4):400-406. doi:10.1002/cre2.288PubMedGoogle ScholarCrossref
122.
Andrén  A , Hedberg  P , Walker-Engström  ML , Wahlén  P , Tegelberg  A .  Effects of treatment with oral appliance on 24-h blood pressure in patients with obstructive sleep apnea and hypertension: a randomized clinical trial.   Sleep Breath. 2013;17(2):705-712. doi:10.1007/s11325-012-0746-7PubMedGoogle ScholarCrossref
123.
Bloch  KE , Iseli  A , Zhang  JN ,  et al.  A randomized, controlled crossover trial of two oral appliances for sleep apnea treatment.   Am J Respir Crit Care Med. 2000;162(1):246-251. doi:10.1164/ajrccm.162.1.9908112PubMedGoogle ScholarCrossref
124.
Durán-Cantolla  J , Crovetto-Martínez  R , Alkhraisat  MH ,  et al.  Efficacy of mandibular advancement device in the treatment of obstructive sleep apnea syndrome: a randomized controlled crossover clinical trial.   Med Oral Patol Oral Cir Bucal. 2015;20(5):e605-e615. doi:10.4317/medoral.20649PubMedGoogle ScholarCrossref
125.
Naismith  SL , Winter  VR , Hickie  IB , Cistulli  PA .  Effect of oral appliance therapy on neurobehavioral functioning in obstructive sleep apnea: a randomized controlled trial.   J Clin Sleep Med. 2005;1(4):374-380. doi:10.5664/jcsm.26365PubMedGoogle ScholarCrossref
126.
Gotsopoulos  H , Chen  C , Qian  J , Cistulli  PA .  Oral appliance therapy improves symptoms in obstructive sleep apnea: a randomized, controlled trial.   Am J Respir Crit Care Med. 2002;166(5):743-748. doi:10.1164/rccm.200203-208OCPubMedGoogle ScholarCrossref
127.
Gotsopoulos  H , Kelly  JJ , Cistulli  PA .  Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial.   Sleep. 2004;27(5):934-941. doi:10.1093/sleep/27.5.934PubMedGoogle ScholarCrossref
128.
Johnston  CD , Gleadhill  IC , Cinnamond  MJ , Gabbey  J , Burden  DJ .  Mandibular advancement appliances and obstructive sleep apnoea: a randomized clinical trial.   Eur J Orthod. 2002;24(3):251-262. doi:10.1093/ejo/24.3.251PubMedGoogle ScholarCrossref
129.
Quinnell  TG , Bennett  M , Jordan  J ,  et al.  A crossover randomised controlled trial of oral mandibular advancement devices for obstructive sleep apnoea-hypopnoea (TOMADO).   Thorax. 2014;69(10):938-945. doi:10.1136/thoraxjnl-2014-205464PubMedGoogle ScholarCrossref
130.
Gagnadoux  F , Pépin  JL , Vielle  B ,  et al.  Impact of mandibular advancement therapy on endothelial function in severe obstructive sleep apnea.   Am J Respir Crit Care Med. 2017;195(9):1244-1252. doi:10.1164/rccm.201609-1817OCPubMedGoogle ScholarCrossref
131.
Marklund  M , Carlberg  B , Forsgren  L , Olsson  T , Stenlund  H , Franklin  KA .  Oral appliance therapy in patients with daytime sleepiness and snoring or mild to moderate sleep apnea: a randomized clinical trial.   JAMA Intern Med. 2015;175(8):1278-1285. doi:10.1001/jamainternmed.2015.2051PubMedGoogle ScholarCrossref
132.
Petri  N , Svanholt  P , Solow  B , Wildschiødtz  G , Winkel  P .  Mandibular advancement appliance for obstructive sleep apnoea: results of a randomised placebo controlled trial using parallel group design.   J Sleep Res. 2008;17(2):221-229. doi:10.1111/j.1365-2869.2008.00645.xPubMedGoogle ScholarCrossref
133.
Malow  BA , Foldvary-Schaefer  N , Vaughn  BV ,  et al.  Treating obstructive sleep apnea in adults with epilepsy: a randomized pilot trial.   Neurology. 2008;71(8):572-577. doi:10.1212/01.wnl.0000323927.13250.54PubMedGoogle ScholarCrossref
134.
Redline  S . Effects of treatment of sleep apnea on metabolic syndrome. [NCT01385995]. 2014. Accessed October 11, 2022. https://www.clinicaltrials.gov/show/NCT01385995
135.
Goehring  C , Perrier  A , Morabia  A .  Spectrum bias: a quantitative and graphical analysis of the variability of medical diagnostic test performance.   Stat Med. 2004;23(1):125-135. doi:10.1002/sim.1591PubMedGoogle ScholarCrossref
136.
Mulherin  SA , Miller  WC .  Spectrum bias or spectrum effect? subgroup variation in diagnostic test evaluation.   Ann Intern Med. 2002;137(7):598-602. doi:10.7326/0003-4819-137-7-200210010-00011PubMedGoogle ScholarCrossref
137.
Jelinek  M .  Spectrum bias: why generalists and specialists do not connect.   Evid Based Med. 2008;13(5):132-133. doi:10.1136/ebm.13.5.132PubMedGoogle ScholarCrossref
138.
Lachs  MS , Nachamkin  I , Edelstein  PH , Goldman  J , Feinstein  AR , Schwartz  JS .  Spectrum bias in the evaluation of diagnostic tests: lessons from the rapid dipstick test for urinary tract infection.   Ann Intern Med. 1992;117(2):135-140. doi:10.7326/0003-4819-117-2-135PubMedGoogle ScholarCrossref
139.
Willis  BH .  Spectrum bias—why clinicians need to be cautious when applying diagnostic test studies.   Fam Pract. 2008;25(5):390-396. doi:10.1093/fampra/cmn051PubMedGoogle ScholarCrossref
140.
Myers  KA , Mrkobrada  M , Simel  DL .  Does this patient have obstructive sleep apnea?: the Rational Clinical Examination systematic review.   JAMA. 2013;310(7):731-741. doi:10.1001/jama.2013.276185PubMedGoogle ScholarCrossref
141.
Qaseem  A , Dallas  P , Owens  DK , Starkey  M , Holty  JE , Shekelle  P ; Clinical Guidelines Committee of the American College of Physicians.  Diagnosis of obstructive sleep apnea in adults: a clinical practice guideline from theAmerican College of Physicians.   Ann Intern Med. 2014;161(3):210-220. doi:10.7326/M12-3187PubMedGoogle ScholarCrossref
142.
Johns  M , Hocking  B .  Daytime sleepiness and sleep habits of Australian workers.   Sleep. 1997;20(10):844-849. doi:10.1093/sleep/20.10.844PubMedGoogle ScholarCrossref
143.
Johns  MW .  Sensitivity and specificity of the multiple sleep latency test (MSLT), the maintenance of wakefulness test and the Epworth Sleepiness Scale: failure of the MSLT as a gold standard.   J Sleep Res. 2000;9(1):5-11. doi:10.1046/j.1365-2869.2000.00177.xPubMedGoogle ScholarCrossref
144.
US Modafinil in Narcolepsy Multicenter Study Group.  Randomized trial of modafinil for the treatment of pathological somnolence in narcolepsy.   Ann Neurol. 1998;43(1):88-97. doi:10.1002/ana.410430115PubMedGoogle ScholarCrossref
145.
Kingshott  RN , Vennelle  M , Coleman  EL , Engleman  HM , Mackay  TW , Douglas  NJ .  Randomized, double-blind, placebo-controlled crossover trial of modafinil in the treatment of residual excessive daytime sleepiness in the sleep apnea/hypopnea syndrome.   Am J Respir Crit Care Med. 2001;163(4):918-923. doi:10.1164/ajrccm.163.4.2005036PubMedGoogle ScholarCrossref
146.
Puhan  MA , Suarez  A , Lo Cascio  C , Zahn  A , Heitz  M , Braendli  O .  Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial.   BMJ. 2006;332(7536):266-270. doi:10.1136/bmj.38705.470590.55PubMedGoogle ScholarCrossref
147.
Medical Advisory Secretariat.  Oral appliances for obstructive sleep apnea: an evidence-based analysis.   Ont Health Technol Assess Ser. 2009;9(5):1-51.PubMedGoogle Scholar
148.
Miletin  MS , Hanly  PJ .  Measurement properties of the Epworth Sleepiness Scale.   Sleep Med. 2003;4(3):195-199. doi:10.1016/S1389-9457(03)00031-5PubMedGoogle ScholarCrossref
149.
Smith  SS , Oei  TP , Douglas  JA , Brown  I , Jorgensen  G , Andrews  J .  Confirmatory factor analysis of the Epworth Sleepiness Scale (ESS) in patients with obstructive sleep apnoea.   Sleep Med. 2008;9(7):739-744. doi:10.1016/j.sleep.2007.08.004PubMedGoogle ScholarCrossref
150.
Vongpatanasin  W .  Resistant hypertension: a review of diagnosis and management.  []  JAMA. 2014;311(21):2216-2224. doi:10.1001/jama.2014.5180PubMedGoogle ScholarCrossref
151.
Bisognano  JD , Bakris  G , Nadim  MK ,  et al.  Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial.   J Am Coll Cardiol. 2011;58(7):765-773. doi:10.1016/j.jacc.2011.06.008PubMedGoogle ScholarCrossref
152.
Esler  MD , Krum  H , Sobotka  PA , Schlaich  MP , Schmieder  RE , Böhm  M ; Symplicity HTN-2 Investigators.  Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial.   Lancet. 2010;376(9756):1903-1909. doi:10.1016/S0140-6736(10)62039-9PubMedGoogle ScholarCrossref
153.
Chobanian  AV , Bakris  GL , Black  HR ,  et al; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee.  The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report.   JAMA. 2003;289(19):2560-2572. doi:10.1001/jama.289.19.2560PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close