Accepted for Publication: September 28, 2022.
Published Online: November 17, 2022. doi:10.1001/jamaophthalmol.2022.4845
Corresponding Author: Gianni Virgili, MD, Centre for Public Health, Queen’s University Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Belfast BT12 6BA, United Kingdom (g.virgili@qub.ac.uk).
Author Contributions: Drs Costanzo and Virgili had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Costanzo, Lengyel, Parravano, Veldsman, Badhwar, Llewellyn, Lourida, MacGillivray, Rittman, Virgili.
Acquisition, analysis, or interpretation of data: Costanzo, Lengyel, Biagini, Badhwar, Betts, Cherubini, Llewellyn, Rittman, Tamburin, Tai, Virgili.
Drafting of the manuscript: Costanzo, Lengyel, Biagini, Veldsman, Badhwar, Lourida, MacGillivray, Tai, Virgili.
Critical revision of the manuscript for important intellectual content: Costanzo, Lengyel, Parravano, Veldsman, Badhwar, Betts, Cherubini, Llewellyn, Lourida, MacGillivray, Rittman, Tamburin, Tai.
Statistical analysis: Virgili.
Obtained funding: Virgili.
Administrative, technical, or material support: Costanzo, Lengyel, Veldsman, Badhwar, Betts, Tai, Virgili.
Supervision: Costanzo, Lengyel, Parravano, Llewellyn, Rittman, Virgili.
Conflict of Interest Disclosures: Dr Parravano reports personal fees from Allergan, Novartis, Bayer, Roche, and Zeiss outside the submitted work. No other disclosures were reported.
Funding/Support: The research reported in this publication was supported by a grant from the Italian Ministry of Health, under the Aging Network of Italian Research Hospitals (IRCCS). The work was also supported by grant from the Medical Research Council of UK (grant MR/N029941/1) and an unrestricted grant from OPTOS Plc. The research for this article was financially supported by the Italian Ministry of Health and Fondazione Roma. This work was also funded by Alzheimer's Research UK (to Dr Llewellyn), Alan Turing Institute/Engineering and Physical Sciences Research Council (grant EP/N510129/1, to Dr Llewellyn), the National Institute for Health Research Applied Research Collaboration South West Peninsula (to Dr Llewellyn), National Health and Medical Research Council (to Dr Llewellyn), and the National Institute on Aging/National Institutes of Health (grant RF1AG055654, to Dr Llewellyn).
Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
Additional Contributions: We are grateful to Iris Gordon, MSc (Information Specialist, Centre for Public Health, Queens University Belfast, UK), for conducting the searches for this review; compensation was not received.
4.Alber
J , Goldfarb
D , Thompson
LI ,
et al. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: what we know, what we don't, and how to move forward.
Alzheimers Dement. 2020;16(1):229-243. doi:
10.1002/alz.12006Google ScholarCrossref 17.Hui
J , Zhao
Y , Yu
S , Liu
J , Chiu
K , Wang
Y . Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer’s disease patients: a meta-analysis.
PLoS One. 2021;16(8):e0255362. doi:
10.1371/journal.pone.0255362
PubMedGoogle ScholarCrossref 19.Katsimpris
A , Karamaounas
A , Sideri
AM , Katsimpris
J , Georgalas
I , Petrou
P . Optical coherence tomography angiography in Alzheimer’s disease: a systematic review and meta-analysis.
Eye (Lond). 2021;36(7):1419-1426. doi:
10.1038/s41433-021-01648-1PubMedGoogle ScholarCrossref 20.Rifai
OM , McGrory
S , Robbins
CB ,
et al. The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review.
Alzheimers Dement (Amst). 2021;13(1):e12149. doi:
10.1002/dad2.12149
PubMedGoogle ScholarCrossref 21.Zhang
JF , Wiseman
S , Valdés-Hernández
MC ,
et al. The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke, and dementia: a systematic review.
Front Neurol. 2020;11:1009. doi:
10.3389/fneur.2020.01009
PubMedGoogle ScholarCrossref 22.Lemmens
S , Devulder
A , Van Keer
K , Bierkens
J , De Boever
P , Stalmans
I . Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker.
Front Neurosci. 2020;14:16. doi:
10.3389/fnins.2020.00016
PubMedGoogle ScholarCrossref 32.Salgado
JF . Transforming the area under the normal curve (AUC) into Cohen’s d, Pearson’s r pb, odds-ratio, and natural log odds-ratio: two conversion tables.
Eur J Psychol Appl Legal Context. 2018;10:35-47. doi:
10.5093/ejpalc2018a5
Google ScholarCrossref 35.Thomson
KL , Yeo
JM , Waddell
B , Cameron
JR , Pal
S . A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography.
Alzheimers Dement (Amst). 2015;1(2):136-143. doi:
10.1016/j.dadm.2015.03.001
PubMedGoogle ScholarCrossref 37.Wang
M , Zhu
Y , Shi
Z , Li
C , Shen
Y . Meta-analysis of the relationship of peripheral retinal nerve fiber layer thickness to Alzheimer’s disease and mild cognitive impairment.
Shanghai Arch Psychiatry. 2015;27(5):263-279.
PubMedGoogle Scholar 38.Schönfeldt-Lecuona
C , Schmidt
A , Pinkhardt
EH ,
et al. Optical coherence tomography (OCT) a new diagnostic tool in psychiatry?
Fortschr Neurol Psychiatr. 2014;82(10):566-571.
PubMedGoogle Scholar 40.Heringa
SM , Bouvy
WH , van den Berg
E , Moll
AC , Kappelle
LJ , Biessels
GJ . Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review.
J Cereb Blood Flow Metab. 2013;33(7):983-995. doi:
10.1038/jcbfm.2013.58
PubMedGoogle ScholarCrossref 41.He
XF , Liu
YT , Peng
C , Zhang
F , Zhuang
S , Zhang
JS . Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis.
Int J Ophthalmol. 2012;5(3):401-405.
PubMedGoogle Scholar 42.Kuźma
E , Littlejohns
TJ , Khawaja
AP , Llewellyn
DJ , Ukoumunne
OC , Thiem
U . Visual impairment, eye diseases, and dementia risk: a systematic review and meta-analysis.
J Alzheimers Dis. 2021;83(3):1073-1087. doi:
10.3233/JAD-210250
PubMedGoogle ScholarCrossref 43.Donahue
RJ , Moller-Trane
R , Nickells
RW . Meta-analysis of transcriptomic changes in optic nerve injury and neurodegenerative models reveals a fundamental response to injury throughout the central nervous system.
Mol Vis. 2017;23:987-1005.
PubMedGoogle Scholar 50.More
SS , Beach
JM , McClelland
C , Mokhtarzadeh
A , Vince
R . In vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer's disease.
ACS Chem Neurosci. 2019;10(11):4492-4501. doi:
10.1021/acschemneuro.9b00331Google ScholarCrossref 52.Corvi
F , Pellegrini
M , Erba
S , Cozzi
M , Staurenghi
G , Giani
A . Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices.
Am J Ophthalmol. 2018;186:25-31. doi:
10.1016/j.ajo.2017.11.011
PubMedGoogle ScholarCrossref 53.Thakoor
KA , Li
X , Tsamis
E , Sajda
P , Hood
DC . Enhancing the accuracy of glaucoma detection from OCT probability maps using convolutional neural networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:2036-2040. doi:
10.1109/EMBC.2019.8856899
PubMedGoogle Scholar