[Skip to Content]
[Skip to Content Landing]

Ocular Biomarkers for Alzheimer Disease DementiaAn Umbrella Review of Systematic Reviews and Meta-analyses

To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  What is the diagnostic accuracy of ocular biomarkers for early diagnosis of Alzheimer disease (AD), as investigated in systematic reviews?

Finding  In this umbrella review of 14 systematic reviews and meta-analyses, optical coherence tomography peripapillary retinal nerve fiber layer thickness, optical coherence tomography angiography, foveal avascular zone measurement, and prosaccade latency of saccadic eye movements were extensively investigated and yielded only moderate accuracy. Antisaccade error showed the best accuracy in a smaller number of trials.

Meaning  This study found that ocular biomarkers showed poor to moderate diagnostic accuracy for detection of AD in cross-sectional studies; longitudinal studies are needed on whether changes in these parameters could yield better predictions of AD onset.

Abstract

Importance  Several ocular biomarkers have been proposed for the early detection of Alzheimer disease (AD) and mild cognitive impairment (MCI), particularly fundus photography, optical coherence tomography (OCT), and OCT angiography (OCTA).

Objective  To perform an umbrella review of systematic reviews to assess the diagnostic accuracy of ocular biomarkers for early diagnosis of Alzheimer disease.

Data Sources  MEDLINE, Embase, and PsycINFO were searched from January 2000 to November 2021. The references of included reviews were also searched.

Study Selection  Systematic reviews investigating the diagnostic accuracy of ocular biomarkers to detect AD and MCI, in secondary care or memory clinics, against established clinical criteria or clinical judgment.

Data Extraction and Synthesis  The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline checklist was followed and the Risk Of Bias in Systematic reviews tool was used to assess review quality.

Main Outcomes and Measures  The prespecified outcome was the accuracy of ocular biomarkers for diagnosing AD and MCI. The area under the curve (AUC) was derived from standardized mean difference.

Results  From the 591 titles, 14 systematic reviews were included (median [range] number of studies in each review, 14 [5-126]). Only 4 reviews were at low risk of bias on all Risk of Bias in Systematic Reviews domains. The imaging-derived parameters with the most evidence for detecting AD compared with healthy controls were OCT peripapillary retinal nerve fiber layer thickness (38 studies including 1883 patients with AD and 2510 controls; AUC = 0.70; 95% CI, 0.53-0.79); OCTA foveal avascular zone (5 studies including 177 patients with AD and 371 controls; AUC = 0.73; 95% CI, 0.50-0.89); and saccadic eye movements prosaccade latency (30 studies including 651 patients with AD/MCI and 771 controls; AUC = 0.64; 95% CI, 0.58-0.69). Antisaccade error was investigated in fewer studies (12 studies including 424 patients with AD/MCI and 382 controls) and yielded the best accuracy (AUC = 0.79; 95% CI, 0.70-0.88).

Conclusions and Relevance  This umbrella review has highlighted limitations in design and reporting of the existing research on ocular biomarkers for diagnosing AD. Parameters with the best evidence showed poor to moderate diagnostic accuracy in cross-sectional studies. Future longitudinal studies should investigate whether changes in OCT and OCTA measurements over time can yield accurate predictions of AD onset.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: September 28, 2022.

Published Online: November 17, 2022. doi:10.1001/jamaophthalmol.2022.4845

Corresponding Author: Gianni Virgili, MD, Centre for Public Health, Queen’s University Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Belfast BT12 6BA, United Kingdom (g.virgili@qub.ac.uk).

Author Contributions: Drs Costanzo and Virgili had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Costanzo, Lengyel, Parravano, Veldsman, Badhwar, Llewellyn, Lourida, MacGillivray, Rittman, Virgili.

Acquisition, analysis, or interpretation of data: Costanzo, Lengyel, Biagini, Badhwar, Betts, Cherubini, Llewellyn, Rittman, Tamburin, Tai, Virgili.

Drafting of the manuscript: Costanzo, Lengyel, Biagini, Veldsman, Badhwar, Lourida, MacGillivray, Tai, Virgili.

Critical revision of the manuscript for important intellectual content: Costanzo, Lengyel, Parravano, Veldsman, Badhwar, Betts, Cherubini, Llewellyn, Lourida, MacGillivray, Rittman, Tamburin, Tai.

Statistical analysis: Virgili.

Obtained funding: Virgili.

Administrative, technical, or material support: Costanzo, Lengyel, Veldsman, Badhwar, Betts, Tai, Virgili.

Supervision: Costanzo, Lengyel, Parravano, Llewellyn, Rittman, Virgili.

Conflict of Interest Disclosures: Dr Parravano reports personal fees from Allergan, Novartis, Bayer, Roche, and Zeiss outside the submitted work. No other disclosures were reported.

Funding/Support: The research reported in this publication was supported by a grant from the Italian Ministry of Health, under the Aging Network of Italian Research Hospitals (IRCCS). The work was also supported by grant from the Medical Research Council of UK (grant MR/N029941/1) and an unrestricted grant from OPTOS Plc. The research for this article was financially supported by the Italian Ministry of Health and Fondazione Roma. This work was also funded by Alzheimer's Research UK (to Dr Llewellyn), Alan Turing Institute/Engineering and Physical Sciences Research Council (grant EP/N510129/1, to Dr Llewellyn), the National Institute for Health Research Applied Research Collaboration South West Peninsula (to Dr Llewellyn), National Health and Medical Research Council (to Dr Llewellyn), and the National Institute on Aging/National Institutes of Health (grant RF1AG055654, to Dr Llewellyn).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We are grateful to Iris Gordon, MSc (Information Specialist, Centre for Public Health, Queens University Belfast, UK), for conducting the searches for this review; compensation was not received.

References
1.
Livingston  G , Huntley  J , Sommerlad  A ,  et al.  Dementia prevention, intervention, and care: 2020 report of the Lancet Commission.   Lancet. 2020;396(10248):413-446. doi:10.1016/S0140-6736(20)30367-6Google ScholarCrossref
2.
Yiannopoulou  KG , Anastasiou  AI , Zachariou  V , Pelidou  SH .  Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research.   Biomedicines. 2019;7(4):E97. doi:10.3390/biomedicines7040097 PubMedGoogle ScholarCrossref
3.
Soria Lopez  JA , González  HM , Léger  GC .  Alzheimer’s disease.   Handb Clin Neurol. 2019;167:231-255. doi:10.1016/B978-0-12-804766-8.00013-3 PubMedGoogle ScholarCrossref
4.
Alber  J , Goldfarb  D , Thompson  LI ,  et al.  Developing retinal biomarkers for the earliest stages of Alzheimer's disease: what we know, what we don't, and how to move forward.   Alzheimers Dement. 2020;16(1):229-243. doi:10.1002/alz.12006Google ScholarCrossref
5.
Song  A , Johnson  N , Ayala  A , Thompson  AC .  Optical coherence tomography in patients with Alzheimer’s disease: what can it tell us?   Eye Brain. 2021;13:1-20. doi:10.2147/EB.S235238 PubMedGoogle ScholarCrossref
6.
Ge  YJ , Xu  W , Ou  YN ,  et al.  Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis.   Ageing Res Rev. 2021;69:101361. doi:10.1016/j.arr.2021.101361Google ScholarCrossref
7.
Kassavetis  P , Kaski  D , Anderson  T , Hallett  M .  Eye movement disorders in movement disorders.   Mov Disord Clin Pract. 2022;9(3):284-295. doi:10.1002/mdc3.13413 PubMedGoogle ScholarCrossref
8.
Douglas  VP , Douglas  KAA , Cestari  DM .  Ophthalmic manifestations of dementing disorders.   Curr Opin Ophthalmol. 2021;32(6):515-520. doi:10.1097/ICU.0000000000000807 PubMedGoogle ScholarCrossref
9.
Mahajan  D , Votruba  M .  Can the retina be used to diagnose and plot the progression of Alzheimer’s disease?   Acta Ophthalmol. 2017;95(8):768-777. doi:10.1111/aos.13472 PubMedGoogle ScholarCrossref
10.
Chan  VTT , Sun  Z , Tang  S ,  et al.  Spectral-domain OCT measurements in Alzheimer's disease: a systematic review and meta-analysis.   Ophthalmology. 2019;126(4):497-510. doi:10.1016/j.ophtha.2018.08.009Google ScholarCrossref
11.
Chhablani  PP , Ambiya  V , Nair  AG , Bondalapati  S , Chhablani  J .  Retinal findings on OCT in systemic conditions.   Semin Ophthalmol. 2018;33(4):525-546. doi:10.1080/08820538.2017.1332233 PubMedGoogle ScholarCrossref
12.
den Haan  J , Verbraak  FD , Visser  PJ , Bouwman  FH .  Retinal thickness in Alzheimer’s disease: a systematic review and meta-analysis.   Alzheimers Dement (Amst). 2017;6:162-170. doi:10.1016/j.dadm.2016.12.014 PubMedGoogle ScholarCrossref
13.
Knoll  B , Simonett  J , Volpe  NJ ,  et al.  Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: case-control study and meta-analysis.   Alzheimers Dement (Amst). 2016;4:85-93. doi:10.1016/j.dadm.2016.07.004 PubMedGoogle ScholarCrossref
14.
López-de-Eguileta  A , Cerveró  A , Ruiz de Sabando  A , Sánchez-Juan  P , Casado  A .  Ganglion cell layer thinning in Alzheimer’s disease.   Medicina (Kaunas). 2020;56(10):E553. doi:10.3390/medicina56100553 PubMedGoogle ScholarCrossref
15.
Mejia-Vergara  AJ , Restrepo-Jimenez  P , Pelak  VS .  Optical coherence tomography in mild cognitive impairment: a systematic review and meta-analysis.   Front Neurol. 2020;11:578698. doi:10.3389/fneur.2020.578698 PubMedGoogle ScholarCrossref
16.
Noah  AM , Almghairbi  D , Moppett  IK .  Optical coherence tomography in mild cognitive impairment: systematic review and meta-analysis.   Clin Neurol Neurosurg. 2020;196:106036. doi:10.1016/j.clineuro.2020.106036Google ScholarCrossref
17.
Hui  J , Zhao  Y , Yu  S , Liu  J , Chiu  K , Wang  Y .  Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer’s disease patients: a meta-analysis.   PLoS One. 2021;16(8):e0255362. doi:10.1371/journal.pone.0255362 PubMedGoogle ScholarCrossref
18.
Jin  Q , Lei  Y , Wang  R , Wu  H , Ji  K , Ling  L .  A systematic review and meta-analysis of retinal microvascular features in Alzheimer’s disease.   Front Aging Neurosci. 2021;13:683824. doi:10.3389/fnagi.2021.683824 PubMedGoogle ScholarCrossref
19.
Katsimpris  A , Karamaounas  A , Sideri  AM , Katsimpris  J , Georgalas  I , Petrou  P .  Optical coherence tomography angiography in Alzheimer’s disease: a systematic review and meta-analysis.   Eye (Lond). 2021;36(7):1419-1426. doi:10.1038/s41433-021-01648-1PubMedGoogle ScholarCrossref
20.
Rifai  OM , McGrory  S , Robbins  CB ,  et al.  The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review.   Alzheimers Dement (Amst). 2021;13(1):e12149. doi:10.1002/dad2.12149 PubMedGoogle ScholarCrossref
21.
Zhang  JF , Wiseman  S , Valdés-Hernández  MC ,  et al.  The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke, and dementia: a systematic review.   Front Neurol. 2020;11:1009. doi:10.3389/fneur.2020.01009 PubMedGoogle ScholarCrossref
22.
Lemmens  S , Devulder  A , Van Keer  K , Bierkens  J , De Boever  P , Stalmans  I .  Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker.   Front Neurosci. 2020;14:16. doi:10.3389/fnins.2020.00016 PubMedGoogle ScholarCrossref
23.
McGrory  S , Cameron  JR , Pellegrini  E ,  et al.  The application of retinal fundus camera imaging in dementia: a systematic review.   Alzheimers Dement (Amst). 2016;6:91-107. doi:10.1016/j.dadm.2016.11.001 PubMedGoogle ScholarCrossref
24.
Wu  H , Wang  C , Chen  C ,  et al.  Association between retinal vascular geometric changes and cognitive impairment: a systematic review and meta-analysis.   J Clin Neurol. 2020;16(1):19-28. doi:10.3988/jcn.2020.16.1.19 PubMedGoogle ScholarCrossref
25.
Snyder  PJ , Johnson  LN , Lim  YY ,  et al.  Nonvascular retinal imaging markers of preclinical Alzheimer’s disease.   Alzheimers Dement (Amst). 2016;4:169-178. doi:10.1016/j.dadm.2016.09.001 PubMedGoogle ScholarCrossref
26.
Moja  L , Fernandez del Rio  MP , Banzi  R ,  et al.  Multiple systematic reviews: methods for assessing discordances of results.   Intern Emerg Med. 2012;7(6):563-568. doi:10.1007/s11739-012-0846-1 PubMedGoogle ScholarCrossref
27.
Lucenteforte  E , Moja  L , Pecoraro  V ,  et al.  Discordances originated by multiple meta-analyses on interventions for myocardial infarction: a systematic review.   J Clin Epidemiol. 2015;68(3):246-256. doi:10.1016/j.jclinepi.2014.11.004 PubMedGoogle ScholarCrossref
28.
Siontis  KC , Hernandez-Boussard  T , Ioannidis  JP .  Overlapping meta-analyses on the same topic: survey of published studies.   BMJ. 2013;347:f4501. doi:10.1136/bmj.f4501 PubMedGoogle ScholarCrossref
29.
Moher  D , Tetzlaff  J , Tricco  AC , Sampson  M , Altman  DG .  Epidemiology and reporting characteristics of systematic reviews.   PLoS Med. 2007;4(3):e78. doi:10.1371/journal.pmed.0040078 PubMedGoogle ScholarCrossref
30.
Page  MJ , McKenzie  JE , Bossuyt  PM ,  et al.  The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.  Article in Spanish.  Rev Esp Cardiol (Engl Ed). 2021;74(9):790-799. doi:10.1016/j.recesp.2021.06.016 PubMedGoogle ScholarCrossref
31.
Whiting  P , Savović  J , Higgins  JP ,  et al; ROBIS group.  ROBIS: A new tool to assess risk of bias in systematic reviews was developed.   J Clin Epidemiol. 2016;69:225-234. doi:10.1016/j.jclinepi.2015.06.005 PubMedGoogle ScholarCrossref
32.
Salgado  JF .  Transforming the area under the normal curve (AUC) into Cohen’s d, Pearson’s r pb, odds-ratio, and natural log odds-ratio: two conversion tables.   Eur J Psychol Appl Legal Context. 2018;10:35-47. doi:10.5093/ejpalc2018a5 Google ScholarCrossref
33.
Mandrekar  JN .  Receiver operating characteristic curve in diagnostic test assessment.   J Thorac Oncol. 2010;5(9):1315-1316. doi:10.1097/JTO.0b013e3181ec173d PubMedGoogle ScholarCrossref
34.
Kim  K , Yu  SY , Kwak  HW , Kim  ES .  Retinal neurodegeneration associated with peripheral nerve conduction and autonomic nerve function in diabetic patients.   Am J Ophthalmol. 2016;170:15-24. doi:10.1016/j.ajo.2016.06.038 PubMedGoogle ScholarCrossref
35.
Thomson  KL , Yeo  JM , Waddell  B , Cameron  JR , Pal  S .  A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography.   Alzheimers Dement (Amst). 2015;1(2):136-143. doi:10.1016/j.dadm.2015.03.001 PubMedGoogle ScholarCrossref
36.
Coppola  G , Di Renzo  A , Ziccardi  L ,  et al.  Optical coherence tomography in Alzheimer’s disease: a meta-analysis.   PLoS One. 2015;10(8):e0134750. doi:10.1371/journal.pone.0134750 PubMedGoogle ScholarCrossref
37.
Wang  M , Zhu  Y , Shi  Z , Li  C , Shen  Y .  Meta-analysis of the relationship of peripheral retinal nerve fiber layer thickness to Alzheimer’s disease and mild cognitive impairment.   Shanghai Arch Psychiatry. 2015;27(5):263-279. PubMedGoogle Scholar
38.
Schönfeldt-Lecuona  C , Schmidt  A , Pinkhardt  EH ,  et al.  Optical coherence tomography (OCT) a new diagnostic tool in psychiatry?   Fortschr Neurol Psychiatr. 2014;82(10):566-571. PubMedGoogle Scholar
39.
Ding  J , Patton  N , Deary  IJ ,  et al.  Retinal microvascular abnormalities and cognitive dysfunction: a systematic review.   Br J Ophthalmol. 2008;92(8):1017-1025. doi:10.1136/bjo.2008.141994 PubMedGoogle ScholarCrossref
40.
Heringa  SM , Bouvy  WH , van den Berg  E , Moll  AC , Kappelle  LJ , Biessels  GJ .  Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review.   J Cereb Blood Flow Metab. 2013;33(7):983-995. doi:10.1038/jcbfm.2013.58 PubMedGoogle ScholarCrossref
41.
He  XF , Liu  YT , Peng  C , Zhang  F , Zhuang  S , Zhang  JS .  Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis.   Int J Ophthalmol. 2012;5(3):401-405. PubMedGoogle Scholar
42.
Kuźma  E , Littlejohns  TJ , Khawaja  AP , Llewellyn  DJ , Ukoumunne  OC , Thiem  U .  Visual impairment, eye diseases, and dementia risk: a systematic review and meta-analysis.   J Alzheimers Dis. 2021;83(3):1073-1087. doi:10.3233/JAD-210250 PubMedGoogle ScholarCrossref
43.
Donahue  RJ , Moller-Trane  R , Nickells  RW .  Meta-analysis of transcriptomic changes in optic nerve injury and neurodegenerative models reveals a fundamental response to injury throughout the central nervous system.   Mol Vis. 2017;23:987-1005.PubMedGoogle Scholar
44.
Mardin  CY , Hosari  S .  Optical coherence tomography angiography in neuronal diseases: preliminary findings.   Ophthalmologe. 2019;116(8):714-721. doi:10.1007/s00347-019-0883-5 PubMedGoogle ScholarCrossref
45.
Youssef  P , Nath  S , Chaimowitz  GA , Prat  SS .  Electroretinography in psychiatry: a systematic literature review.   Eur Psychiatry. 2019;62:97-106. doi:10.1016/j.eurpsy.2019.09.006Google ScholarCrossref
46.
Wu  SZ , Masurkar  AV , Balcer  LJ .  Afferent and efferent visual markers of Alzheimer’s disease: a review and update in early stage disease.   Front Aging Neurosci. 2020;12:572337. doi:10.3389/fnagi.2020.572337 PubMedGoogle ScholarCrossref
47.
Opwonya  J , Doan  DNT , Kim  SG ,  et al.  Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis.   Neuropsychol Rev. 2022;32(2):193-227. doi:10.1016/j.eurpsy.2019.09.006PubMedGoogle ScholarCrossref
48.
Kahana Levy  N , Lavidor  M , Vakil  E .  Prosaccade and antisaccade paradigms in persons with Alzheimer's disease: a meta-analytic review.   Neuropsychol Rev. 2018;28(1):16-31. doi:10.1007/s11065-017-9362-4Google ScholarCrossref
49.
Hadoux  X , Hui  F , Lim  JKH ,  et al.  Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease.   Nat Commun. 2019;10(1):4227. doi:10.1038/s41467-019-12242-1Google ScholarCrossref
50.
More  SS , Beach  JM , McClelland  C , Mokhtarzadeh  A , Vince  R .  In vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer's disease.   ACS Chem Neurosci. 2019;10(11):4492-4501. doi:10.1021/acschemneuro.9b00331Google ScholarCrossref
51.
Gopalakrishna  G , Langendam  MW , Scholten  RJ , Bossuyt  PM , Leeflang  MM .  Defining the clinical pathway in cochrane diagnostic test accuracy reviews.   BMC Med Res Methodol. 2016;16(1):153. doi:10.1186/s12874-016-0252-xGoogle ScholarCrossref
52.
Corvi  F , Pellegrini  M , Erba  S , Cozzi  M , Staurenghi  G , Giani  A .  Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices.   Am J Ophthalmol. 2018;186:25-31. doi:10.1016/j.ajo.2017.11.011 PubMedGoogle ScholarCrossref
53.
Thakoor  KA , Li  X , Tsamis  E , Sajda  P , Hood  DC .  Enhancing the accuracy of glaucoma detection from OCT probability maps using convolutional neural networks.   Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:2036-2040. doi:10.1109/EMBC.2019.8856899 PubMedGoogle Scholar
54.
Dong  Y , Guo  X , Arsiwala-Scheppach  LT ,  et al.  Association of optical coherence tomography and optical coherence tomography angiography retinal features with visual function in older adults.   JAMA Ophthalmol. 2022;140(8):809-817. doi:10.1001/jamaophthalmol.2022.2099 PubMedGoogle ScholarCrossref
55.
Kashani  AH .  Promises and pitfalls of retinal biomarkers in systemic health and disease.   JAMA Ophthalmol. 2022;140(8):817-818. doi:10.1001/jamaophthalmol.2022.2100 PubMedGoogle ScholarCrossref
56.
Simel  DL , Rennie  D , Bossuyt  PM .  The STARD statement for reporting diagnostic accuracy studies: application to the history and physical examination.   J Gen Intern Med. 2008;23(6):768-774. doi:10.1007/s11606-008-0583-3 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close