[Skip to Content]
[Skip to Content Landing]

Progress and Challenges in Bacterial MeningitisA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Bacterial meningitis is a worldwide health problem, with incidence rates ranging from approximately 0.9 per 100 000 individuals per year in high-income countries to 80 per 100 000 individuals per year in low-income countries. In low-income countries, bacterial meningitis has a mortality rate of up to 54%. Up to 24% of those who survive develop chronic neurological sequelae, such as hearing loss or focal neurological deficits.

Observations  Streptococcus pneumoniae causes about 72% and Neisseria meningitidis causes about 11% of cases of bacterial meningitis in people older than 16 years. Escherichia coli and Streptococcus agalactiae cause about 35% of cases of early-onset neonatal meningitis. In adults, risk factors for bacterial meningitis include older age and immunosuppressive conditions. The most common symptoms are headache (84%), fever (74%), stiff neck (74%), altered mental status (median [IQR] Glasgow Coma Scale score of 11 [9-14] on a scale ranging from 3-15), and nausea (62%). Brain imaging should be performed before lumbar puncture if patients present with altered mental status, focal neurological deficits, papilledema, or history of immunocompromising conditions or central nervous system disease. Bacterial meningitis should be suspected if any of the following are present on admission: serum leukocytes greater than 10.0 ×109/L, cerebrospinal fluid (CSF) leukocytes greater than 2000/μL, CSF granulocytes greater than 1180/μL, CSF protein greater than 2.2 g/L, CSF glucose less than 34.23 mg/dL, or fever. A positive Gram stain result for bacteria is diagnostic, but the sensitivity of a positive Gram stain result for bacterial meningitis ranges from 50% to 90%. In countries in which the prevalence of ceftriaxone-resistant Streptococcus pneumoniae exceeds 1%, vancomycin and ceftriaxone are the empirical antibiotics of choice, with the addition of ampicillin in neonates, older patients, and immunocompromised patients. Adjunctive dexamethasone should be used in patients with bacterial meningitis but stopped if Listeria monocytogenes is confirmed.

Conclusions and Relevance  Bacterial meningitis affects approximately 0.9 per 100 000 individuals to 80 per 100 000 individuals per year and has a mortality rate as high as 54%. First-line therapy is prompt empirical intravenous antibiotic therapy and adjunctive dexamethasone.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Rodrigo Hasbun, MD, MPH, Section of Infectious Diseases, UT Health McGovern Medical School, 6431 Fannin St, 2.112 MSB, Houston, TX 77030 (Rodrigo.Hasbun@uth.tmc.edu).

Accepted for Publication: October 17, 2022.

Author Contributions: Dr Hasbun had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of Interest Disclosures: Dr Hasbun reported receiving personal fees from Biofire and Melinta Pharmaceuticals outside the submitted work.

References
1.
van de Beek  D , Brouwer  MC , Koedel  U , Wall  EC .  Community-acquired bacterial meningitis.   Lancet. 2021;398(10306):1171-1183. doi:10.1016/S0140-6736(21)00883-7PubMedGoogle ScholarCrossref
2.
GBD 2016 Causes of Death Collaborators.  Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016.   Lancet. 2017;390(10100):1151-1210. doi:10.1016/S0140-6736(17)32152-9PubMedGoogle ScholarCrossref
3.
Hasbun  R .  Update and advances in community acquired bacterial meningitis.   Curr Opin Infect Dis. 2019;32(3):233-238. doi:10.1097/QCO.0000000000000543PubMedGoogle ScholarCrossref
4.
Hasbun  R , Rosenthal  N , Balada-Llasat  JM ,  et al.  Epidemiology of meningitis and encephalitis in the United States, 2011-2014.   Clin Infect Dis. 2017;65(3):359-363. doi:10.1093/cid/cix319PubMedGoogle ScholarCrossref
5.
Hasbun  R , Wootton  SH , Rosenthal  N ,  et al.  Epidemiology of meningitis and encephalitis in infants and children in the United States, 2011-2014.   Pediatr Infect Dis J. 2019;38(1):37-41. doi:10.1097/INF.0000000000002081PubMedGoogle ScholarCrossref
6.
Oordt-Speets  AM , Bolijn  R , van Hoorn  RC , Bhavsar  A , Kyaw  MH .  Global etiology of bacterial meningitis: a systematic review and meta-analysis.   PLoS One. 2018;13(6):e0198772. doi:10.1371/journal.pone.0198772PubMedGoogle ScholarCrossref
7.
Koelman  DLH , Brouwer  MC , Ter Horst  L , Bijlsma  MW , van der Ende  A , van de Beek  D .  Pneumococcal meningitis in adults: a prospective nationwide cohort study over a 20-year period.   Clin Infect Dis. 2022;74(4):657-667. doi:10.1093/cid/ciab477PubMedGoogle ScholarCrossref
8.
Lopez Castelblanco  R , Lee  M , Hasbun  R .  Epidemiology of Bacterial Meningitis in the United States from 1997-2010: trends after conjugate vaccination and adjunctive dexamethasone recommendations: a population observational based study.   Lancet Infect Dis. 2014;14(9):813-819. doi:10.1016/S1473-3099(14)70805-9PubMedGoogle ScholarCrossref
9.
Brouwer  MC , van de Beek  D .  Epidemiology of community-acquired bacterial meningitis.   Curr Opin Infect Dis. 2018;31(1):78-84. doi:10.1097/QCO.0000000000000417PubMedGoogle ScholarCrossref
10.
Bijlsma  MW , Brouwer  MC , Kasanmoentalib  ES ,  et al.  Community-acquired bacterial meningitis in adults in the Netherlands, 2006-14: a prospective cohort study.   Lancet Infect Dis. 2016;16(3):339-347. doi:10.1016/S1473-3099(15)00430-2PubMedGoogle ScholarCrossref
11.
Radoshevich  L , Cossart  P .  Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis.   Nat Rev Microbiol. 2018;16(1):32-46. doi:10.1038/nrmicro.2017.126PubMedGoogle ScholarCrossref
12.
Absalon  J , Simon  R , Radley  D ,  et al.  Advances towards licensure of a maternal vaccine for the prevention of invasive group B streptococcus disease in infants: a discussion of different approaches.   Hum Vaccin Immunother. 2022;18(1):2037350. doi:10.1080/21645515.2022.2037350PubMedGoogle ScholarCrossref
13.
Hasbun  R , Abrahams  J , Jekel  J , Quagliarello  VJ .  Computed tomography of the head before lumbar puncture in adults with suspected meningitis.   N Engl J Med. 2001;345(24):1727-1733. doi:10.1056/NEJMoa010399PubMedGoogle ScholarCrossref
14.
Tunkel  AR , Hartman  BJ , Kaplan  SL ,  et al.  Practice guidelines for the management of bacterial meningitis.   Clin Infect Dis. 2004;39(9):1267-1284. doi:10.1086/425368PubMedGoogle ScholarCrossref
15.
Salazar  L , Hasbun  R .  Cranial imaging before lumbar puncture in adults with community-acquired meningitis: clinical utility and adherence to the Infectious Diseases Society of America guidelines.   Clin Infect Dis. 2017;64(12):1657-1662. doi:10.1093/cid/cix240PubMedGoogle ScholarCrossref
16.
Costerus  JM , Brouwer  MC , Sprengers  MES , Roosendaal  SD , van der Ende  A , van de Beek  D .  Cranial computed tomography, lumbar puncture, and clinical deterioration in bacterial meningitis: a nationwide cohort study.   Clin Infect Dis. 2018;67(6):920-926. doi:10.1093/cid/ciy200PubMedGoogle ScholarCrossref
17.
McGill  F , Heyderman  RS , Michael  BD ,  et al.  The UK joint specialist societies guideline on the diagnosis and management of acute meningitis and meningococcal sepsis in immunocompetent adults.   J Infect. 2016;72(4):405-438. doi:10.1016/j.jinf.2016.01.007PubMedGoogle ScholarCrossref
18.
van de Beek  D , Cabellos  C , Dzupova  O ,  et al; ESCMID Study Group for Infections of the Brain (ESGIB).  ESCMID guideline: diagnosis and treatment of acute bacterial meningitis.   Clin Microbiol Infect. 2016;22(suppl 3):S37-S62. doi:10.1016/j.cmi.2016.01.007PubMedGoogle ScholarCrossref
19.
Glimåker  M , Johansson  B , Bell  M ,  et al.  Early lumbar puncture in adult bacterial meningitis—rationale for revised guidelines.   Scand J Infect Dis. 2013;45(9):657-663. doi:10.3109/00365548.2013.799289PubMedGoogle ScholarCrossref
20.
Park  N , Nigo  M , Hasbun  R .  Comparison of four international guidelines on the utility of cranial imaging before lumbar puncture in adults with bacterial meningitis.   Clin Neuroradiol. 2022;32(3):857-862. doi:10.1007/s00062-022-01143-4PubMedGoogle ScholarCrossref
21.
Proulx  N , Fréchette  D , Toye  B , Chan  J , Kravcik  S .  Delays in the administration of antibiotics are associated with mortality from adult acute bacterial meningitis.   QJM. 2005;98(4):291-298. doi:10.1093/qjmed/hci047PubMedGoogle ScholarCrossref
22.
Bodilsen  J , Brandt  CT , Sharew  A ,  et al.  Early versus late diagnosis in community-acquired bacterial meningitis: a retrospective cohort study.   Clin Microbiol Infect. 2018;24(2):166-170. doi:10.1016/j.cmi.2017.06.021PubMedGoogle ScholarCrossref
23.
Thomas  KE , Hasbun  R , Jekel  J , Quagliarello  VJ .  The diagnostic accuracy of Kernig’s sign, Brudzinski’s sign, and nuchal rigidity in adults with suspected meningitis.   Clin Infect Dis. 2002;35(1):46-52. doi:10.1086/340979PubMedGoogle ScholarCrossref
24.
van Soest  TM , Chekrouni  N , van Sorge  NM , Brouwer  MC , van de Beek  D .  Bacterial meningitis presenting with a normal cerebrospinal fluid leukocyte count.   J Infect. 2022;84(5):615-620. doi:10.1016/j.jinf.2022.02.029PubMedGoogle ScholarCrossref
25.
Sulaiman  T , Salazar  L , Hasbun  R .  Acute versus subacute community-acquired meningitis: analysis of 611 patients.   Medicine (Baltimore). 2017;96(36):e7984. doi:10.1097/MD.0000000000007984PubMedGoogle ScholarCrossref
26.
Nigrovic  LE , Malley  R , Kuppermann  N .  Meta-analysis of bacterial meningitis score validation studies.   Arch Dis Child. 2012;97(9):799-805. doi:10.1136/archdischild-2012-301798PubMedGoogle ScholarCrossref
27.
Hasbun  R , Bijlsma  M , Brouwer  MC ,  et al.  Risk score for identifying adults with CSF pleocytosis and negative CSF Gram stain at low risk for an urgent treatable cause.   J Infect. 2013;67(2):102-110. doi:10.1016/j.jinf.2013.04.002PubMedGoogle ScholarCrossref
28.
van Soest  TM , Horst  LT , Chekrouni  N ,  et al.  A risk score for identifying patients at low risk for bacterial meningitis in adults with CSF leukocytosis and a negative Gram stain: a derivation and validation study.   Clin Microbiol Infect.S1198-743X(22)00514-6. in press. doi:10.1016/j.cmi.2022.10.001PubMedGoogle ScholarCrossref
29.
Huy  NT , Thao  NTH , Diep  DTN , Kikuchi  M , Zamora  J , Hirayama  K .  Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis.   Crit Care. 2010;14(6):R240. doi:10.1186/cc9395PubMedGoogle ScholarCrossref
30.
Sakushima  K , Hayashino  Y , Kawaguchi  T , Jackson  JL , Fukuhara  S .  Diagnostic accuracy of cerebrospinal fluid lactate for differentiating bacterial meningitis from aseptic meningitis: a meta-analysis.   J Infect. 2011;62(4):255-262. doi:10.1016/j.jinf.2011.02.010PubMedGoogle ScholarCrossref
31.
Kim  H , Roh  YH , Yoon  SH .  Blood procalcitonin level as a diagnostic marker of pediatric bacterial meningitis: a systematic review and meta-analysis.   Diagnostics (Basel). 2021;11(5):846. doi:10.3390/diagnostics11050846PubMedGoogle ScholarCrossref
32.
Wei  TT , Hu  ZD , Qin  BD ,  et al.  Diagnostic accuracy of procalcitonin in bacterial meningitis versus nonbacterial meningitis: a systematic review and meta-analysis.   Medicine (Baltimore). 2016;95(11):e3079. doi:10.1097/MD.0000000000003079PubMedGoogle ScholarCrossref
33.
Nigrovic  LE , Malley  R , Macias  CG ,  et al; American Academy of Pediatrics, Pediatric Emergency Medicine Collaborative Research Committee.  Effect of antibiotic pretreatment on cerebrospinal fluid profiles of children with bacterial meningitis.   Pediatrics. 2008;122(4):726-730. doi:10.1542/peds.2007-3275PubMedGoogle ScholarCrossref
34.
Rogers  T , Sok  K , Erickson  T ,  et al.  Impact of antibiotic therapy in the microbiological yield of healthcare-associated ventriculitis and meningitis.   Open Forum Infect Dis. 2019;6(3):ofz050. doi:10.1093/ofid/ofz050PubMedGoogle ScholarCrossref
35.
Chong  BSW , Kennedy  KJ .  Comparison of a commercial real-time PCR panel to routine laboratory methods for the diagnosis of meningitis-encephalitis.   Pathology. 2021;53(5):635-638. doi:10.1016/j.pathol.2020.09.029PubMedGoogle ScholarCrossref
36.
Trujillo-Gómez  J , Tsokani  S , Arango-Ferreira  C ,  et al.  Biofire FilmArray Meningitis/Encephalitis panel for the aetiological diagnosis of central nervous system infections: a systematic review and diagnostic test accuracy meta-analysis.   EClinicalMedicine. 2022;44:101275. doi:10.1016/j.eclinm.2022.101275PubMedGoogle ScholarCrossref
37.
Péan de Ponfilly  G , Chauvin  A , Salmona  M ,  et al.  Impact of a 24/7 multiplex-PCR on the management of patients with confirmed viral meningitis.   J Infect. 2021;83(6):650-655. doi:10.1016/j.jinf.2021.08.050PubMedGoogle ScholarCrossref
38.
Okeke  IN , Feasey  N , Parkhill  J ,  et al.  Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings.   BMJ Glob Health. 2020;5(12):e003622. doi:10.1136/bmjgh-2020-003622PubMedGoogle ScholarCrossref
39.
Saha  S , Ramesh  A , Kalantar  K ,  et al.  Unbiased metagenomic sequencing for pediatric meningitis in Bangladesh reveals neuroinvasive Chikungunya virus outbreak and other unrealized pathogens.   mBio. 2019;10(6):e02877-e19. doi:10.1128/mBio.02877-19PubMedGoogle ScholarCrossref
40.
Bodilsen  J , Dalager-Pedersen  M , Schønheyder  HC , Nielsen  H .  Time to antibiotic therapy and outcome in bacterial meningitis: a Danish population-based cohort study.   BMC Infect Dis. 2016;16:392. doi:10.1186/s12879-016-1711-zPubMedGoogle ScholarCrossref
41.
Charlier  C , Perrodeau  É , Leclercq  A ,  et al; MONALISA study group.  Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study.   Lancet Infect Dis. 2017;17(5):510-519. doi:10.1016/S1473-3099(16)30521-7PubMedGoogle ScholarCrossref
42.
Buchholz  G , Koedel  U , Pfister  HW , Kastenbauer  S , Klein  M .  Dramatic reduction of mortality in pneumococcal meningitis.   Crit Care. 2016;20(1):312. doi:10.1186/s13054-016-1498-8PubMedGoogle ScholarCrossref
43.
Wall  EC , Cartwright  K , Scarborough  M ,  et al.  High mortality amongst adolescents and adults with bacterial meningitis in sub-Saharan Africa: an analysis of 715 cases from Malawi.   Plos One. 2013;8(7):e69783. doi:10.1371/journal.pone.0069783PubMedGoogle ScholarCrossref
44.
Trotter  CL , Lingani  C , Fernandez  K ,  et al.  Impact of MenAfriVac in nine countries of the African meningitis belt, 2010-15: an analysis of surveillance data.   Lancet Infect Dis. 2017;17(8):867-872. doi:10.1016/S1473-3099(17)30301-8PubMedGoogle ScholarCrossref
45.
Furyk  JS , Swann  O , Molyneux  E .  Systematic review: neonatal meningitis in the developing world.   Trop Med Int Health. 2011;16(6):672-679. doi:10.1111/j.1365-3156.2011.02750.xPubMedGoogle ScholarCrossref
46.
Edmond  K , Clark  A , Korczak  VS , Sanderson  C , Griffiths  UK , Rudan  I .  Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis.   Lancet Infect Dis. 2010;10(5):317-328. doi:10.1016/S1473-3099(10)70048-7PubMedGoogle ScholarCrossref
47.
Bijlsma  MW , Brouwer  MC , Bossuyt  PM ,  et al.  Risk scores for outcome in bacterial meningitis: systematic review and external validation study.   J Infect. 2016;73(5):393-401. doi:10.1016/j.jinf.2016.08.003PubMedGoogle ScholarCrossref
48.
Aronin  SI , Peduzzi  P , Quagliarello  VJ .  Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing.   Ann Intern Med. 1998;129(11):862-869. doi:10.7326/0003-4819-129-11_Part_1-199812010-00004PubMedGoogle ScholarCrossref
49.
Weisfelt  M , van de Beek  D , Spanjaard  L , Reitsma  JB , de Gans  J .  A risk score for unfavorable outcome in adults with bacterial meningitis.   Ann Neurol. 2008;63(1):90-97. doi:10.1002/ana.21216PubMedGoogle ScholarCrossref
50.
Hoen  B , Viel  JF , Gerard  A , Dureux  JB , Canton  P .  Mortality in pneumococcal meningitis: a multivariate analysis of prognostic factors.   Eur J Med. 1993;2:28-32. PubMedGoogle Scholar
51.
Ajayi-Obe  EK , Lodi  E , Alkali  AS ,  et al.  Prognostic scores for use in African meningococcal epidemics.   Bull World Health Organ 1998;76:149-152. PubMedGoogle Scholar
52.
Barquet  N , Domingo  P , Cayla  JA ,  et al.  Prognostic factors in meningococcal disease: development of a bedside predictive model and scoring system: Barcelona Meningococcal Disease Surveillance Group.   JAMA. 1997;278(6):491-496. doi:10.1001/jama.278.6.491PubMedGoogle ScholarCrossref
53.
Gardlund  B .  Prognostic evaluation in meningococcal disease: a retrospective study of 115 cases.   Intensive Care Med. 1986;12(4):302-307. doi:10.1007/BF00261740PubMedGoogle ScholarCrossref
54.
Gedde-Dahl  TW , Bjark  P , Hoiby  EA , Host  JH , Bruun  JN .  Severity of meningococcal disease: assessment by factors and scores and implications for patient management.   Rev Infect Dis. 1990;12(6):973-992. doi:10.1093/clinids/12.6.973PubMedGoogle ScholarCrossref
55.
Niklasson  PM , Lundbergh  P , Strandell  T .  Prognostic factors in meningococcal disease.   Scand J Infect Dis. 1971;3(1):17-25. doi:10.3109/inf.1971.3.issue-1.03PubMedGoogle ScholarCrossref
56.
Turini  TL , Baldy  JL , Passos Jdo  N , Takata  PK .  Prognostic factors in meningococcal disease: study related to 254 cases.   Rev Saude Publica. 1979;13(3):173-182. doi:10.1590/s0034-89101979000300002PubMedGoogle ScholarCrossref
57.
Brouwer  MC , McIntyre  P , Prasad  K , van de Beek  D .  Corticosteroids for acute bacterial meningitis.   Cochrane Database Syst Rev. 2015;(9):CD004405. doi:10.1002/14651858.CD004405.pub5PubMedGoogle ScholarCrossref
58.
Brouwer  MC , Heckenberg  SG , de Gans  J , Spanjaard  L , Reitsma  JB , van de Beek  D .  Nationwide implementation of adjunctive dexamethasone therapy for pneumococcal meningitis.   Neurology. 2010;75(17):1533-1539. doi:10.1212/WNL.0b013e3181f96297PubMedGoogle ScholarCrossref
59.
van de Beek  D , Brouwer  MC , Koedel  U , Wall  EC .  Steroid use in non-pneumococcal and non-Haemophilus bacterial meningitis—authors’ reply.   Lancet. 2022;399(10326):718. doi:10.1016/S0140-6736(21)02662-3PubMedGoogle ScholarCrossref
60.
Gundamraj  S , Hasbun  R .  The use of adjunctive steroids in central nervous infections.   Front Cell Infect Microbiol. 2020;10:592017. doi:10.3389/fcimb.2020.592017PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close