[Skip to Content]
[Skip to Content Landing]

Therapeutic Cancer Vaccines for the Management of Recurrent and Metastatic Head and Neck CancerA Review

To identify the key insights or developments described in this article
1 Credit CME

Importance  Squamous cell carcinoma of the head and neck (HNSCC) is prevalent globally and in the US. Management, particularly after disease recurrence, can be challenging, and exploring additional treatment modalities, such as therapeutic cancer vaccines, may offer an opportunity to improve outcomes in this setting.

Observations  This review provides an overview of the clinical efficacy of different treatment modalities that are currently available for the treatment of recurrent and metastatic HNSCC, including checkpoint inhibitors and targeted therapies, with a detailed summary of the numerous T-cell vaccines that have been studied in the setting of HNSCC, as well as a detailed summary of B-cell therapeutic vaccines being investigated for various malignant tumors.

Conclusions and Relevance  The findings of this review suggest that several therapeutic T-cell and B-cell vaccines, which have been recently developed and evaluated in a clinical setting, offer a promising treatment modality with the potential to improve outcomes for patients with recurrent and metastatic HNSCC.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: October 31, 2022.

Published Online: December 29, 2022. doi:10.1001/jamaoto.2022.4264

Corresponding Author: Darrion L. Mitchell, MD, PhD, Department of Radiation Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, 460 W 10th Ave, Columbus, OH 43210 (darrion.mitchell@osumc.edu).

Conflict of Interest Disclosures: Dr Wieland reported a patent pending for HPV-E2 as a potential immunological target in HPV-positive cancers and its uses in managing abnormal epithelial cell growth, and a patent pending for T-cell receptors of human HPV proteins, compositions, and uses (US patent application No., 16/971, 627) filed by Emory University. No other disclosures were reported.

Sung  H , Ferlay  J , Siegel  RL ,  et al.  Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.   CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660PubMedGoogle ScholarCrossref
Siegel  RL , Miller  KD , Fuchs  HE , Jemal  A .  Cancer statistics, 2022.   CA Cancer J Clin. 2022;72(1):7-33. doi:10.3322/caac.21708PubMedGoogle ScholarCrossref
Huang  C , Chen  L , Savage  SR ,  et al; Clinical Proteomic Tumor Analysis Consortium.  Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma.   Cancer Cell. 2021;39(3):361-379.e16. doi:10.1016/j.ccell.2020.12.007PubMedGoogle ScholarCrossref
Ragin  CC , Taioli  E .  Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis.   Int J Cancer. 2007;121(8):1813-1820. doi:10.1002/ijc.22851PubMedGoogle ScholarCrossref
Zanoni  DK , Patel  SG , Shah  JP .  Changes in the 8th edition of the American Joint Committee on Cancer (AJCC) staging of head and neck cancer: rationale and implications.   Curr Oncol Rep. 2019;21(6):52. doi:10.1007/s11912-019-0799-xPubMedGoogle ScholarCrossref
Bourhis  J , Le Maître  A , Baujat  B , Audry  H , Pignon  JP ; Meta-Analysis of Chemotherapy in Head, Neck Cancer Collaborative Group; Meta-Analysis of Radiotherapy in Carcinoma of Head, Neck Collaborative Group; Meta-Analysis of Chemotherapy in Nasopharynx Carcinoma Collaborative Group.  Individual patients’ data meta-analyses in head and neck cancer.   Curr Opin Oncol. 2007;19(3):188-194. doi:10.1097/CCO.0b013e3280f01010PubMedGoogle ScholarCrossref
Ho  JC , Phan  J .  Reirradiation of head and neck cancer using modern highly conformal techniques.   Head Neck. 2018;40(9):2078-2093. doi:10.1002/hed.25180PubMedGoogle ScholarCrossref
Svajdova  M , Dubinsky  P , Kazda  T .  Radical external beam re-irradiation in the treatment of recurrent head and neck cancer: critical review.   Head Neck. 2021;43(1):354-366. doi:10.1002/hed.26485PubMedGoogle ScholarCrossref
Sacco  AG , Worden  FP .  Molecularly targeted therapy for the treatment of head and neck cancer: a review of the ErbB family inhibitors.   Onco Targets Ther. 2016;9:1927-1943. doi:10.2147/OTT.S93720PubMedGoogle ScholarCrossref
Burtness  B , Goldwasser  MA , Flood  W , Mattar  B , Forastiere  AA ; Eastern Cooperative Oncology Group.  Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study.   J Clin Oncol. 2005;23(34):8646-8654. doi:10.1200/JCO.2005.02.4646PubMedGoogle ScholarCrossref
Vermorken  JB , Mesia  R , Rivera  F ,  et al.  Platinum-based chemotherapy plus cetuximab in head and neck cancer.   N Engl J Med. 2008;359(11):1116-1127. doi:10.1056/NEJMoa0802656PubMedGoogle ScholarCrossref
Vermorken  JB , Stöhlmacher-Williams  J , Davidenko  I ,  et al; SPECTRUM investigators.  Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial.   Lancet Oncol. 2013;14(8):697-710. doi:10.1016/S1470-2045(13)70181-5PubMedGoogle ScholarCrossref
Machiels  JP , Haddad  RI , Fayette  J ,  et al; LUX-H&N 1 investigators.  Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised phase 3 trial.   Lancet Oncol. 2015;16(5):583-594. doi:10.1016/S1470-2045(15)70124-5PubMedGoogle ScholarCrossref
Siu  LL , Soulieres  D , Chen  EX ,  et al; Princess Margaret Hospital Phase II Consortium; National Cancer Institute of Canada Clinical Trials Group Study.  Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a Princess Margaret Hospital phase II consortium and National Cancer Institute of Canada Clinical Trials Group Study.   J Clin Oncol. 2007;25(16):2178-2183. doi:10.1200/JCO.2006.07.6547PubMedGoogle ScholarCrossref
Abdul Razak  AR , Soulières  D , Laurie  SA ,  et al.  A phase II trial of dacomitinib, an oral pan-human EGF receptor (HER) inhibitor, as first-line treatment in recurrent and/or metastatic squamous-cell carcinoma of the head and neck.   Ann Oncol. 2013;24(3):761-769. doi:10.1093/annonc/mds503PubMedGoogle ScholarCrossref
Ohm  JE , Carbone  DP .  VEGF as a mediator of tumor-associated immunodeficiency.   Immunol Res. 2001;23(2-3):263-272. doi:10.1385/IR:23:2-3:263PubMedGoogle ScholarCrossref
Cohen  EE , Davis  DW , Karrison  TG ,  et al.  Erlotinib and bevacizumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck: a phase I/II study.   Lancet Oncol. 2009;10(3):247-257. doi:10.1016/S1470-2045(09)70002-6PubMedGoogle ScholarCrossref
Wentink  MQ , Hackeng  TM , Tabruyn  SP ,  et al.  Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity.   Proc Natl Acad Sci U S A. 2016;113(44):12532-12537. doi:10.1073/pnas.1610258113PubMedGoogle ScholarCrossref
Argiris  A , Kotsakis  AP , Hoang  T ,  et al.  Cetuximab and bevacizumab: preclinical data and phase II trial in recurrent or metastatic squamous cell carcinoma of the head and neck.   Ann Oncol. 2013;24(1):220-225. doi:10.1093/annonc/mds245PubMedGoogle ScholarCrossref
Kono  M , Komatsuda  H , Yamaki  H ,  et al.  Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma.   Oncoimmunology. 2022;11(1):2021619. doi:10.1080/2162402X.2021.2021619PubMedGoogle ScholarCrossref
Jank  BJ , Lenz  T , Haas  M ,  et al.  Radiosensitizing effect of galunisertib, a TGF-ß receptor I inhibitor, on head and neck squamous cell carcinoma in vitro.   Invest New Drugs. 2022;40(3):478-486. doi:10.1007/s10637-021-01207-1PubMedGoogle ScholarCrossref
Lehman  CE , Spencer  A , Hall  S ,  et al.  IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK.   Sci Rep. 2021;11(1):10826. doi:10.1038/s41598-021-90289-1PubMedGoogle ScholarCrossref
Goodman  AM , Kato  S , Bazhenova  L ,  et al.  Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers.   Mol Cancer Ther. 2017;16(11):2598-2608. doi:10.1158/1535-7163.MCT-17-0386PubMedGoogle ScholarCrossref
Kuss  I , Hathaway  B , Ferris  RL , Gooding  W , Whiteside  TL .  Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck.   Clin Cancer Res. 2004;10(11):3755-3762. doi:10.1158/1078-0432.CCR-04-0054PubMedGoogle ScholarCrossref
Waldman  AD , Fritz  JM , Lenardo  MJ .  A guide to cancer immunotherapy: from T cell basic science to clinical practice.   Nat Rev Immunol. 2020;20(11):651-668. doi:10.1038/s41577-020-0306-5PubMedGoogle ScholarCrossref
Mei  Z , Huang  J , Qiao  B , Lam  AK .  Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma.   Int J Oral Sci. 2020;12(1):16. doi:10.1038/s41368-020-0084-8PubMedGoogle ScholarCrossref
Botticelli  A , Cirillo  A , Strigari  L ,  et al.  Anti-PD-1 and Anti-PD-L1 in head and neck cancer: a network meta-analysis.   Front Immunol. 2021;12:705096. doi:10.3389/fimmu.2021.705096PubMedGoogle ScholarCrossref
Mehra  R , Seiwert  TY , Gupta  S ,  et al.  Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012.   Br J Cancer. 2018;119(2):153-159. doi:10.1038/s41416-018-0131-9PubMedGoogle ScholarCrossref
Bauml  J , Seiwert  TY , Pfister  DG ,  et al.  Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study.   J Clin Oncol. 2017;35(14):1542-1549. doi:10.1200/JCO.2016.70.1524PubMedGoogle ScholarCrossref
Sacco  AG , Chen  R , Worden  FP ,  et al.  Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial.   Lancet Oncol. 2021;22(6):883-892. doi:10.1016/S1470-2045(21)00136-4PubMedGoogle ScholarCrossref
Cohen  EEW , Soulières  D , Le Tourneau  C ,  et al; KEYNOTE-040 investigators.  Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study.   Lancet. 2019;393(10167):156-167. doi:10.1016/S0140-6736(18)31999-8PubMedGoogle ScholarCrossref
Burtness  B , Harrington  KJ , Greil  R ,  et al; KEYNOTE-048 Investigators.  Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study.   Lancet. 2019;394(10212):1915-1928. doi:10.1016/S0140-6736(19)32591-7PubMedGoogle ScholarCrossref
Zandberg  DP , Algazi  AP , Jimeno  A ,  et al.  Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: results from a single-arm, phase II study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy.   Eur J Cancer. 2019;107:142-152. doi:10.1016/j.ejca.2018.11.015PubMedGoogle ScholarCrossref
Ferris  RL , Haddad  R , Even  C ,  et al.  Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study.   Ann Oncol. 2020;31(7):942-950. doi:10.1016/j.annonc.2020.04.001PubMedGoogle ScholarCrossref
Ferris  RL , Blumenschein  G  Jr , Fayette  J ,  et al.  Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression.   Oral Oncol. 2018;81:45-51. doi:10.1016/j.oraloncology.2018.04.008PubMedGoogle ScholarCrossref
Anderson  AC , Joller  N , Kuchroo  VK .  Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation.   Immunity. 2016;44(5):989-1004. doi:10.1016/j.immuni.2016.05.001PubMedGoogle ScholarCrossref
Bilusic  M , Madan  RA .  Therapeutic cancer vaccines: the latest advancement in targeted therapy.   Am J Ther. 2012;19(6):e172-e181. doi:10.1097/MJT.0b013e3182068cdbPubMedGoogle ScholarCrossref
Hollingsworth  RE , Jansen  K .  Turning the corner on therapeutic cancer vaccines.   NPJ Vaccines. 2019;4:7. doi:10.1038/s41541-019-0103-yPubMedGoogle ScholarCrossref
Shibata  H , Zhou  L , Xu  N , Egloff  AM , Uppaluri  R .  Personalized cancer vaccination in head and neck cancer.   Cancer Sci. 2021;112(3):978-988. doi:10.1111/cas.14784PubMedGoogle ScholarCrossref
Klein  L , Kyewski  B , Allen  PM , Hogquist  KA .  Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see).   Nat Rev Immunol. 2014;14(6):377-391. doi:10.1038/nri3667PubMedGoogle ScholarCrossref
Ward  JP , Gubin  MM , Schreiber  RD .  The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer.   Adv Immunol. 2016;130:25-74. doi:10.1016/bs.ai.2016.01.001PubMedGoogle ScholarCrossref
Yoshitake  Y , Fukuma  D , Yuno  A ,  et al.  Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS.   Clin Cancer Res. 2015;21(2):312-321. doi:10.1158/1078-0432.CCR-14-0202PubMedGoogle ScholarCrossref
Yamamoto  TN , Kishton  RJ , Restifo  NP .  Developing neoantigen-targeted T cell-based treatments for solid tumors.   Nat Med. 2019;25(10):1488-1499. doi:10.1038/s41591-019-0596-yPubMedGoogle ScholarCrossref
Massarelli  E , William  W , Johnson  F ,  et al.  Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial.   JAMA Oncol. 2019;5(1):67-73. doi:10.1001/jamaoncol.2018.4051PubMedGoogle ScholarCrossref
Voskens  CJ , Sewell  D , Hertzano  R ,  et al.  Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma.   Head Neck. 2012;34(12):1734-1746. doi:10.1002/hed.22004PubMedGoogle ScholarCrossref
Taylor  GS , Jia  H , Harrington  K ,  et al.  A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer.   Clin Cancer Res. 2014;20(19):5009-5022. doi:10.1158/1078-0432.CCR-14-1122-TPubMedGoogle ScholarCrossref
Hui  EP , Taylor  GS , Jia  H ,  et al.  Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients.   Cancer Res. 2013;73(6):1676-1688. doi:10.1158/0008-5472.CAN-12-2448PubMedGoogle ScholarCrossref
Kaumaya  PT .  B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine.   Future Oncol. 2020;16(23):1767-1791. doi:10.2217/fon-2020-0224PubMedGoogle ScholarCrossref
Zandberg  DP , Rollins  S , Goloubeva  O ,  et al.  A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN).   Cancer Immunol Immunother. 2015;64(3):367-379. doi:10.1007/s00262-014-1640-xPubMedGoogle ScholarCrossref
Batista  FD , Harwood  NE .  The who, how and where of antigen presentation to B cells.   Nat Rev Immunol. 2009;9(1):15-27. doi:10.1038/nri2454PubMedGoogle ScholarCrossref
Shalapour  S , Karin  M .  The neglected brothers come of age: B cells and cancer.   Semin Immunol. 2021;52:101479. doi:10.1016/j.smim.2021.101479PubMedGoogle ScholarCrossref
Xia  Y , Tao  H , Hu  Y ,  et al.  IL-2 augments the therapeutic efficacy of adoptively transferred B cells which directly kill tumor cells via the CXCR4/CXCL12 and perforin pathways.   Oncotarget. 2016;7(37):60461-60474. doi:10.18632/oncotarget.11124PubMedGoogle ScholarCrossref
DiLillo  DJ , Yanaba  K , Tedder  TF .  B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice.   J Immunol. 2010;184(7):4006-4016. doi:10.4049/jimmunol.0903009PubMedGoogle ScholarCrossref
Griss  J , Bauer  W , Wagner  C ,  et al.  B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma.   Nat Commun. 2019;10(1):4186. doi:10.1038/s41467-019-12160-2PubMedGoogle ScholarCrossref
Helmink  BA , Reddy  SM , Gao  J ,  et al.  B cells and tertiary lymphoid structures promote immunotherapy response.   Nature. 2020;577(7791):549-555. doi:10.1038/s41586-019-1922-8PubMedGoogle ScholarCrossref
Petitprez  F , de Reyniès  A , Keung  EZ ,  et al.  B cells are associated with survival and immunotherapy response in sarcoma.   Nature. 2020;577(7791):556-560. doi:10.1038/s41586-019-1906-8PubMedGoogle ScholarCrossref
Sharabi  AB , Nirschl  CJ , Kochel  CM ,  et al.  Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen.   Cancer Immunol Res. 2015;3(4):345-355. doi:10.1158/2326-6066.CIR-14-0196PubMedGoogle ScholarCrossref
Kim  SS , Shen  S , Miyauchi  S ,  et al.  B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade.   Clin Cancer Res. 2020;26(13):3345-3359. doi:10.1158/1078-0432.CCR-19-3211PubMedGoogle ScholarCrossref
Wieland  A , Patel  MR , Cardenas  MA ,  et al.  Defining HPV-specific B cell responses in patients with head and neck cancer.   Nature. 2021;597(7875):274-278. doi:10.1038/s41586-020-2931-3PubMedGoogle ScholarCrossref
Eberhardt  CS , Kissick  HT , Patel  MR ,  et al.  Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer.   Nature. 2021;597(7875):279-284. doi:10.1038/s41586-021-03862-zPubMedGoogle ScholarCrossref
Zhu  L , Zhao  L , Wu  M , Chen  Z , Li  H .  B-cell epitope peptide vaccination targeting dimer interface of epidermal growth factor receptor (EGFR).   Immunol Lett. 2013;153(1-2):33-40. doi:10.1016/j.imlet.2013.07.003PubMedGoogle ScholarCrossref
Cheng  C , Deng  L , Li  R .  The immunogenicity and anti-tumor efficacy of a rationally designed EGFR vaccine.   Cell Physiol Biochem. 2018;46(1):46-56. doi:10.1159/000488408PubMedGoogle ScholarCrossref
Kaumaya  PTP , Guo  L , Overholser  J , Penichet  ML , Bekaii-Saab  T .  Immunogenicity and antitumor efficacy of a novel human PD-1 B-cell vaccine (PD1-Vaxx) and combination immunotherapy with dual trastuzumab/pertuzumab-like HER-2 B-cell epitope vaccines (B-Vaxx) in a syngeneic mouse model.   Oncoimmunology. 2020;9(1):1818437. doi:10.1080/2162402X.2020.1818437PubMedGoogle ScholarCrossref
Bekaii-Saab  T , Wesolowski  R , Ahn  DH ,  et al.  Phase I immunotherapy trial with two chimeric HER-2 B-cell peptide vaccines emulsified in montanide ISA 720VG and nor-MDP adjuvant in patients with advanced solid tumors.   Clin Cancer Res. 2019;25(12):3495-3507. doi:10.1158/1078-0432.CCR-18-3997PubMedGoogle ScholarCrossref
Gavilondo  JV , Hernández-Bernal  F , Ayala-Ávila  M ,  et al; CENTAURO Group of Investigators.  Specific active immunotherapy with a VEGF vaccine in patients with advanced solid tumors. results of the CENTAURO antigen dose escalation phase I clinical trial.   Vaccine. 2014;32(19):2241-2250. doi:10.1016/j.vaccine.2013.11.102PubMedGoogle ScholarCrossref
Goedegebuure  RSA , Wentink  MQ , van der Vliet  HJ ,  et al.  A phase i open-label clinical trial evaluating the therapeutic vaccine hVEGF26-104/RFASE in patients with advanced solid malignancies.   Oncologist. 2021;26(2):e218-e229. doi:10.1002/onco.13576PubMedGoogle ScholarCrossref
Wiedermann  U , Garner-Spitzer  E , Chao  Y ,  et al.  Clinical and immunologic responses to a B-Cell epitope vaccine in patients with HER2/neu-overexpressing advanced gastric cancer-results from phase Ib trial IMU.ACS.001.   Clin Cancer Res. 2021;27(13):3649-3660. doi:10.1158/1078-0432.CCR-20-3742PubMedGoogle ScholarCrossref
Sebastian  M , Schröder  A , Scheel  B ,  et al.  A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer.   Cancer Immunol Immunother. 2019;68(5):799-812. doi:10.1007/s00262-019-02315-xPubMedGoogle ScholarCrossref
García  B , Neninger  E , de la Torre  A ,  et al.  Effective inhibition of the epidermal growth factor/epidermal growth factor receptor binding by anti-epidermal growth factor antibodies is related to better survival in advanced non-small-cell lung cancer patients treated with the epidermal growth factor cancer vaccine.   Clin Cancer Res. 2008;14(3):840-846. doi:10.1158/1078-0432.CCR-07-1050PubMedGoogle ScholarCrossref
Rodriguez  PC , Popa  X , Martínez  O ,  et al.  A phase III clinical trial of the epidermal growth factor vaccine CIMAvax-EGF as switch maintenance therapy in advanced non-small cell lung cancer patients.   Clin Cancer Res. 2016;22(15):3782-3790. doi:10.1158/1078-0432.CCR-15-0855PubMedGoogle ScholarCrossref
Dy  GDA , Reid  M , Lee  K ,  et al.  P2.04-26 interim results from a phase i/ii trial of nivolumab in combination with CIMAvax-EGF as second-line therapy in advanced NSCLC.   J Thorac Oncol. 2018;13(10):S740. doi:10.1016/j.jtho.2018.08.1250Google ScholarCrossref
Tobias  J , Jasinska  J , Baier  K ,  et al.  Enhanced and long term immunogenicity of a HER-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide.   BMC Cancer. 2017;17(1):118. doi:10.1186/s12885-017-3098-7PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity


My Saved Searches

You currently have no searches saved.


My Saved Courses

You currently have no courses saved.