[Skip to Content]
[Skip to Content Landing]

Management Challenges in Patients Younger Than 65 Years With Severe Aortic Valve DiseaseA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  The management of aortic valve disease, including aortic stenosis and aortic regurgitation (AR), in younger adult patients (age <65 years) is complex, and the optimal strategy is often unclear, contingent on multiple anatomic and holistic factors.

Observations  Traditional surgical approaches carry significant considerations, including compulsory lifelong anticoagulation for patients who receive a mechanical aortic valve replacement (AVR) and the risk of structural valvular deterioration and need for subsequent valve intervention in those who receive a bioprosthetic AVR. These factors are magnified in young adults who are considering pregnancy, for whom issues of anticoagulation and valve longevity are heightened. The Ross procedure has emerged as a promising alternative; however, its adoption is limited to highly specialized centers. Valve repair is an option for selected patients with AR. These treatment options offer varying degrees of durability and are associated with different risks and complications, especially for younger adult patients. Patient-centered care from a multidisciplinary valve team allows for discussion of the optimal timing of intervention and the advantages and disadvantages of the various treatment options.

Conclusions and Relevance  The management of severe aortic valve disease in adults younger than 65 years is complex, and there are numerous considerations with each management decision. While mechanical AVR and bioprosthetic AVR have historically been the standards of care, other options are emerging for selected patients but are not yet generalizable beyond specialized surgical centers. A detailed discussion by members of the multidisciplinary heart team and the patient is an integral part of the shared decision-making process.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: October 26, 2022.

Published Online: December 21, 2022. doi:10.1001/jamacardio.2022.4770

Corresponding Author: Robert O. Bonow, MD, MS, Northwestern University Feinberg School of Medicine, 676 N St Clair St, Ste 600, Chicago, IL 60611 (r-bonow@northwestern.edu).

Conflict of Interest Disclosures: Dr Malaisrie reported receiving grant support and serving as consultant for Artivion, Terumo Aortic, Edwards Lifesciences, and Medtronic outside the submitted work. Dr McCarthy reported royalties and/or honorarium from Edwards Lifesciences, Medtronic, and Atricure; serving as a member of the advisory board for Egnite; and serving as the principal investigator of the REPAIR MR trial outside the submitted work. Dr Davidson reported receiving grant support and serving as a consultant for Edwards Lifesciences. No other disclosures were reported.

Disclaimer: Dr Bonow is Editor of JAMA Cardiology, but he was not involved in any of the decisions regarding review of the manuscript or its acceptance.

References
1.
Bevan  GH , Zidar  DA , Josephson  RA , Al-Kindi  SG .  Mortality due to aortic stenosis in the United States, 2008-2017.   JAMA. 2019;321(22):2236-2238. doi:10.1001/jama.2019.6292PubMedGoogle ScholarCrossref
2.
Dujardin  KS , Enriquez-Sarano  M , Schaff  HV , Bailey  KR , Seward  JB , Tajik  AJ .  Mortality and morbidity of aortic regurgitation in clinical practice: a long-term follow-up study.   Circulation. 1999;99(14):1851-1857. doi:10.1161/01.CIR.99.14.1851PubMedGoogle ScholarCrossref
3.
Roberts  WC , Ko  JM .  Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation.   Circulation. 2005;111(7):920-925. doi:10.1161/01.CIR.0000155623.48408.C5PubMedGoogle ScholarCrossref
4.
Roberts  WC , Ko  JM , Moore  TR , Jones  WH  III .  Causes of pure aortic regurgitation in patients having isolated aortic valve replacement at a single US tertiary hospital (1993 to 2005).   Circulation. 2006;114(5):422-429. doi:10.1161/CIRCULATIONAHA.106.622761PubMedGoogle ScholarCrossref
5.
Otto  CM , Nishimura  RA , Bonow  RO ,  et al.  2020 ACC/AHA Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.   Circulation. 2021;143(5):e72-e227.PubMedGoogle Scholar
6.
Puskas  J , Gerdisch  M , Nichols  D ,  et al; PROACT Investigators.  Reduced anticoagulation after mechanical aortic valve replacement: interim results from the prospective randomized on-X valve anticoagulation clinical trial randomized Food and Drug Administration investigational device exemption trial.   J Thorac Cardiovasc Surg. 2014;147(4):1202-1210. doi:10.1016/j.jtcvs.2014.01.004PubMedGoogle ScholarCrossref
7.
Dvir  D , Bourguignon  T , Otto  CM ,  et al; VIVID (Valve in Valve International Data) Investigators.  Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves.   Circulation. 2018;137(4):388-399. doi:10.1161/CIRCULATIONAHA.117.030729PubMedGoogle ScholarCrossref
8.
VARC-3 Writing C, Généreux  P , Piazza  N ,  et al.  Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research.   J Am Coll Cardiol. 2021;77(21):2717-2746. doi:10.1016/j.jacc.2021.02.038PubMedGoogle ScholarCrossref
9.
Salaun  E , Mahjoub  H , Girerd  N ,  et al.  Rate, timing, correlates, and outcomes of hemodynamic valve deterioration after bioprosthetic surgical aortic valve replacement.   Circulation. 2018;138(10):971-985. doi:10.1161/CIRCULATIONAHA.118.035150PubMedGoogle ScholarCrossref
10.
Bourguignon  T , El Khoury  R , Candolfi  P ,  et al.  Very long-term outcomes of the Carpentier-Edwards Perimount aortic valve in patients aged 60 or younger.   Ann Thorac Surg. 2015;100(3):853-859. doi:10.1016/j.athoracsur.2015.03.105PubMedGoogle ScholarCrossref
11.
Banbury  MK , Cosgrove  DM  III , White  JA , Blackstone  EH , Frater  RW , Okies  JE .  Age and valve size effect on the long-term durability of the Carpentier-Edwards aortic pericardial bioprosthesis.   Ann Thorac Surg. 2001;72(3):753-757. doi:10.1016/S0003-4975(01)02992-7PubMedGoogle ScholarCrossref
12.
Etnel  JRG , Huygens  SA , Grashuis  P ,  et al.  Bioprosthetic aortic valve replacement in nonelderly adults: a systematic review, meta-analysis, microsimulation.   Circ Cardiovasc Qual Outcomes. 2019;12(2):e005481. doi:10.1161/CIRCOUTCOMES.118.005481PubMedGoogle ScholarCrossref
13.
Kostyunin  AE , Yuzhalin  AE , Rezvova  MA , Ovcharenko  EA , Glushkova  TV , Kutikhin  AG .  Degeneration of bioprosthetic heart valves: update 2020.   J Am Heart Assoc. 2020;9(19):e018506. doi:10.1161/JAHA.120.018506PubMedGoogle ScholarCrossref
14.
Hammermeister  K , Sethi  GK , Henderson  WG , Grover  FL , Oprian  C , Rahimtoola  SH .  Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial.   J Am Coll Cardiol. 2000;36(4):1152-1158. doi:10.1016/S0735-1097(00)00834-2PubMedGoogle ScholarCrossref
15.
Bloomfield  P , Kitchin  AH , Wheatley  DJ , Walbaum  PR , Lutz  W , Miller  HC .  A prospective evaluation of the Björk-Shiley, Hancock, and Carpentier-Edwards heart valve prostheses.   Circulation. 1986;73(6):1213-1222. doi:10.1161/01.CIR.73.6.1213PubMedGoogle ScholarCrossref
16.
Bloomfield  P , Wheatley  DJ , Prescott  RJ , Miller  HC .  Twelve-year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses.   N Engl J Med. 1991;324(9):573-579. doi:10.1056/NEJM199102283240901PubMedGoogle ScholarCrossref
17.
Oxenham  H , Bloomfield  P , Wheatley  DJ ,  et al.  Twenty year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses.   Heart. 2003;89(7):715-721. doi:10.1136/heart.89.7.715PubMedGoogle ScholarCrossref
18.
Chiang  YP , Chikwe  J , Moskowitz  AJ , Itagaki  S , Adams  DH , Egorova  NN .  Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years.   JAMA. 2014;312(13):1323-1329. doi:10.1001/jama.2014.12679PubMedGoogle ScholarCrossref
19.
Goldstone  AB , Chiu  P , Baiocchi  M ,  et al.  Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement.   N Engl J Med. 2017;377(19):1847-1857. doi:10.1056/NEJMoa1613792PubMedGoogle ScholarCrossref
20.
Hirji  SA , Kolkailah  AA , Ramirez-Del Val  F ,  et al.  Mechanical versus bioprosthetic aortic valve replacement in patients aged 50 years and younger.   Ann Thorac Surg. 2018;106(4):1113-1120. doi:10.1016/j.athoracsur.2018.05.073PubMedGoogle ScholarCrossref
21.
Vahanian  A , Beyersdorf  F , Praz  F ,  et al; ESC/EACTS Scientific Document Group.  2021 ESC/EACTS guidelines for the management of valvular heart disease.   Eur J Cardiothorac Surg. 2021;60(4):727-800. doi:10.1093/ejcts/ezab389PubMedGoogle ScholarCrossref
22.
Eikelboom  JW , Connolly  SJ , Brueckmann  M ,  et al; RE-ALIGN Investigators.  Dabigatran versus warfarin in patients with mechanical heart valves.   N Engl J Med. 2013;369(13):1206-1214. doi:10.1056/NEJMoa1300615PubMedGoogle ScholarCrossref
23.
Jawitz  OK , Wang  TY , Lopes  RD ,  et al.  Rationale and design of PROACT Xa: a randomized, multicenter, open-label, clinical trial to evaluate the efficacy and safety of apixaban versus warfarin in patients with a mechanical On-X Aortic Heart Valve.   Am Heart J. 2020;227:91-99. doi:10.1016/j.ahj.2020.06.014PubMedGoogle ScholarCrossref
24.
van Hagen  IM , Roos-Hesselink  JW , Ruys  TP ,  et al; ROPAC Investigators and the EURObservational Research Programme (EORP) Team.  Pregnancy in women with a mechanical heart valve: data of the European Society of Cardiology Registry of Pregnancy and Cardiac Disease (ROPAC).   Circulation. 2015;132(2):132-142. doi:10.1161/CIRCULATIONAHA.115.015242PubMedGoogle ScholarCrossref
25.
Potter  DD , Sundt  TM  III , Zehr  KJ ,  et al.  Operative risk of reoperative aortic valve replacement.   J Thorac Cardiovasc Surg. 2005;129(1):94-103. doi:10.1016/j.jtcvs.2004.08.023PubMedGoogle ScholarCrossref
26.
Vogt  PR , Brunner-LaRocca  H , Sidler  P ,  et al.  Reoperative surgery for degenerated aortic bioprostheses: predictors for emergency surgery and reoperative mortality.   Eur J Cardiothorac Surg. 2000;17(2):134-139. doi:10.1016/S1010-7940(99)00363-2PubMedGoogle ScholarCrossref
27.
Leon  MB , Smith  CR , Mack  M ,  et al; PARTNER Trial Investigators.  Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.   N Engl J Med. 2010;363(17):1597-1607. doi:10.1056/NEJMoa1008232PubMedGoogle ScholarCrossref
28.
Smith  CR , Leon  MB , Mack  MJ ,  et al; PARTNER Trial Investigators.  Transcatheter versus surgical aortic-valve replacement in high-risk patients.   N Engl J Med. 2011;364(23):2187-2198. doi:10.1056/NEJMoa1103510PubMedGoogle ScholarCrossref
29.
Leon  MB , Smith  CR , Mack  MJ ,  et al; PARTNER 2 Investigators.  Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.   N Engl J Med. 2016;374(17):1609-1620. doi:10.1056/NEJMoa1514616PubMedGoogle ScholarCrossref
30.
Mack  MJ , Leon  MB , Thourani  VH ,  et al; PARTNER 3 Investigators.  Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients.   N Engl J Med. 2019;380(18):1695-1705. doi:10.1056/NEJMoa1814052PubMedGoogle ScholarCrossref
31.
Adams  DH , Popma  JJ , Reardon  MJ ,  et al; US CoreValve Clinical Investigators.  Transcatheter aortic-valve replacement with a self-expanding prosthesis.   N Engl J Med. 2014;370(19):1790-1798. doi:10.1056/NEJMoa1400590PubMedGoogle ScholarCrossref
32.
Reardon  MJ , Kleiman  NS , Adams  DH ,  et al.  Outcomes in the randomized CoreValve US Pivotal High Risk Trial in patients with a Society of Thoracic Surgeons risk score of 7% or less.   JAMA Cardiol. 2016;1(8):945-949. doi:10.1001/jamacardio.2016.2257PubMedGoogle ScholarCrossref
33.
Popma  JJ , Deeb  GM , Yakubov  SJ ,  et al; Evolut Low Risk Trial Investigators.  Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients.   N Engl J Med. 2019;380(18):1706-1715. doi:10.1056/NEJMoa1816885PubMedGoogle ScholarCrossref
34.
Bekeredjian  R , Szabo  G , Balaban  Ü ,  et al.  Patients at low surgical risk as defined by the Society of Thoracic Surgeons score undergoing isolated interventional or surgical aortic valve implantation: in-hospital data and 1-year results from the German Aortic Valve Registry (GARY).   Eur Heart J. 2019;40(17):1323-1330. doi:10.1093/eurheartj/ehy699PubMedGoogle ScholarCrossref
35.
Thyregod  HGH , Ihlemann  N , Jørgensen  TH ,  et al.  Five-year clinical and echocardiographic outcomes from the Nordic Aortic Valve Intervention (NOTION) randomized clinical trial in lower surgical risk patients.   Circulation. 2019. doi:10.1161/CIRCULATIONAHA.118.036606PubMedGoogle ScholarCrossref
36.
Leon  MB , Mack  MJ , Hahn  RT ,  et al; PARTNER 3 Investigators.  Outcomes 2 years after transcatheter aortic valve replacement in patients at low surgical risk.   J Am Coll Cardiol. 2021;77(9):1149-1161. doi:10.1016/j.jacc.2020.12.052PubMedGoogle ScholarCrossref
37.
Forrest  JK , Deeb  GM , Yakubov  SJ ,  et al.  2-Year outcomes after transcatheter versus surgical aortic valve replacement in low-risk patients.   J Am Coll Cardiol. 2022;79(9):882-896. doi:10.1016/j.jacc.2021.11.062PubMedGoogle ScholarCrossref
38.
Makkar  RR , Yoon  SH , Leon  MB ,  et al.  Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke.   JAMA. 2019;321(22):2193-2202. doi:10.1001/jama.2019.7108PubMedGoogle ScholarCrossref
39.
Makkar  RR , Yoon  SH , Chakravarty  T ,  et al.  Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke among patients at low surgical risk.   JAMA. 2021;326(11):1034-1044. doi:10.1001/jama.2021.13346PubMedGoogle ScholarCrossref
40.
Arnold  SV , Zhang  Y , Baron  SJ ,  et al.  Impact of short-term complications on mortality and quality of life after transcatheter aortic valve replacement.   JACC Cardiovasc Interv. 2019;12(4):362-369. doi:10.1016/j.jcin.2018.11.008PubMedGoogle ScholarCrossref
41.
Pibarot  P , Hahn  RT , Weissman  NJ ,  et al.  Association of paravalvular regurgitation with 1-year outcomes after transcatheter aortic valve replacement with the SAPIEN 3 valve.   JAMA Cardiol. 2017;2(11):1208-1216. doi:10.1001/jamacardio.2017.3425PubMedGoogle ScholarCrossref
42.
Winter  MP , Bartko  P , Hofer  F ,  et al.  Evolution of outcome and complications in TAVR: a meta-analysis of observational and randomized studies.   Sci Rep. 2020;10(1):15568. doi:10.1038/s41598-020-72453-1PubMedGoogle ScholarCrossref
43.
Malaisrie  SC , Barnhart  GR , Farivar  RS ,  et al.  Current era minimally invasive aortic valve replacement: techniques and practice.   J Thorac Cardiovasc Surg. 2014;147(1):6-14. doi:10.1016/j.jtcvs.2013.08.086PubMedGoogle ScholarCrossref
44.
Kirmani  BH , Jones  SG , Malaisrie  SC , Chung  DA , Williams  RJ .  Limited versus full sternotomy for aortic valve replacement.   Cochrane Database Syst Rev. 2017;4:CD011793. doi:10.1002/14651858.CD011793.pub2PubMedGoogle ScholarCrossref
45.
Reece  TB , Welke  KF , O’Brien  S , Grau-Sepulveda  MV , Grover  FL , Gammie  JS .  Rethinking the Ross procedure in adults.   Ann Thorac Surg. 2014;97(1):175-181. doi:10.1016/j.athoracsur.2013.07.036PubMedGoogle ScholarCrossref
46.
El-Hamamsy  I , Eryigit  Z , Stevens  LM ,  et al.  Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial.   Lancet. 2010;376(9740):524-531. doi:10.1016/S0140-6736(10)60828-8PubMedGoogle ScholarCrossref
47.
Aboud  A , Charitos  EI , Fujita  B ,  et al.  Long-term outcomes of patients undergoing the Ross procedure.   J Am Coll Cardiol. 2021;77(11):1412-1422. doi:10.1016/j.jacc.2021.01.034PubMedGoogle ScholarCrossref
48.
El-Hamamsy  I , Toyoda  N , Itagaki  S ,  et al.  Propensity-matched comparison of the Ross procedure and prosthetic aortic valve replacement in adults.   J Am Coll Cardiol. 2022;79(8):805-815. doi:10.1016/j.jacc.2021.11.057PubMedGoogle ScholarCrossref
49.
Mazine  A , David  TE , Stoklosa  K , Chung  J , Lafreniere-Roula  M , Ouzounian  M .  Improved outcomes following the Ross procedure compared with bioprosthetic aortic valve replacement.   J Am Coll Cardiol. 2022;79(10):993-1005. doi:10.1016/j.jacc.2021.12.026PubMedGoogle ScholarCrossref
50.
Martin  E , Mohammadi  S , Jacques  F ,  et al.  Clinical outcomes following the Ross procedure in adults: a 25-year longitudinal study.   J Am Coll Cardiol. 2017;70(15):1890-1899. doi:10.1016/j.jacc.2017.08.030PubMedGoogle ScholarCrossref
51.
Romeo  JLR , Papageorgiou  G , da Costa  FFD ,  et al.  Long-term clinical and echocardiographic outcomes in young and middle-aged adults undergoing the Ross procedure.   JAMA Cardiol. 2021;6(5):539-548. doi:10.1001/jamacardio.2020.7434PubMedGoogle ScholarCrossref
52.
Schneider  U , Hofmann  C , Schöpe  J ,  et al.  Long-term results of differentiated anatomic reconstruction of bicuspid aortic valves.   JAMA Cardiol. 2020;5(12):1366-1373. doi:10.1001/jamacardio.2020.3749PubMedGoogle ScholarCrossref
53.
Aicher  D , Kunihara  T , Abou Issa  O , Brittner  B , Gräber  S , Schäfers  HJ .  Valve configuration determines long-term results after repair of the bicuspid aortic valve.   Circulation. 2011;123(2):178-185. doi:10.1161/CIRCULATIONAHA.109.934679PubMedGoogle ScholarCrossref
54.
Pettersson  GB , Crucean  AC , Savage  R ,  et al.  Toward predictable repair of regurgitant aortic valves: a systematic morphology-directed approach to bicommissural repair.   J Am Coll Cardiol. 2008;52(1):40-49. doi:10.1016/j.jacc.2008.01.073PubMedGoogle ScholarCrossref
55.
Boodhwani  M , de Kerchove  L , Glineur  D ,  et al.  Repair of regurgitant bicuspid aortic valves: a systematic approach.   J Thorac Cardiovasc Surg. 2010;140(2):276-284.e1. doi:10.1016/j.jtcvs.2009.11.058PubMedGoogle ScholarCrossref
56.
de Kerchove  L , Boodhwani  M , Glineur  D ,  et al.  Valve sparing-root replacement with the reimplantation technique to increase the durability of bicuspid aortic valve repair.   J Thorac Cardiovasc Surg. 2011;142(6):1430-1438. doi:10.1016/j.jtcvs.2011.08.021PubMedGoogle ScholarCrossref
57.
Malaisrie  SC , Kislitsina  ON , Wilsbacher  L ,  et al.  Valve-sparing versus valve-replacing aortic root replacement in patients with aortic root aneurysm.   J Card Surg. 2022;37(7):1947-1956. doi:10.1111/jocs.16473PubMedGoogle ScholarCrossref
58.
Ozaki  S , Kawase  I , Yamashita  H ,  et al.  A total of 404 cases of aortic valve reconstruction with glutaraldehyde-treated autologous pericardium.   J Thorac Cardiovasc Surg. 2014;147(1):301-306. doi:10.1016/j.jtcvs.2012.11.012PubMedGoogle ScholarCrossref
59.
Sawaya  FJ , Deutsch  MA , Seiffert  M ,  et al.  Safety and efficacy of transcatheter aortic valve replacement in the treatment of pure aortic regurgitation in native valves and failing surgical bioprostheses: results from an international registry study.   JACC Cardiovasc Interv. 2017;10(10):1048-1056. doi:10.1016/j.jcin.2017.03.004PubMedGoogle ScholarCrossref
60.
Roy  DA , Schaefer  U , Guetta  V ,  et al.  Transcatheter aortic valve implantation for pure severe native aortic valve regurgitation.   J Am Coll Cardiol. 2013;61(15):1577-1584. doi:10.1016/j.jacc.2013.01.018PubMedGoogle ScholarCrossref
61.
De Backer  O , Pilgrim  T , Simonato  M ,  et al.  Usefulness of transcatheter aortic valve implantation for treatment of pure native aortic valve regurgitation.   Am J Cardiol. 2018;122(6):1028-1035. doi:10.1016/j.amjcard.2018.05.044PubMedGoogle ScholarCrossref
62.
Arora  S , Lahewala  S , Zuzek  Z ,  et al.  Transcatheter aortic valve replacement in aortic regurgitation: the US experience.   Catheter Cardiovascular Interv. 2021;98(1):E153-E162. doi:10.1002/ccd.29379PubMedGoogle ScholarCrossref
63.
Ruel  M , Kulik  A , Rubens  FD ,  et al.  Late incidence and determinants of reoperation in patients with prosthetic heart valves.   Eur J Cardiothorac Surg. 2004;25(3):364-370. doi:10.1016/j.ejcts.2003.12.013PubMedGoogle ScholarCrossref
64.
Jawitz  OK , Gulack  BC , Grau-Sepulveda  MV ,  et al.  Reoperation after transcatheter aortic valve replacement: an analysis of the Society of Thoracic Surgeons database.   JACC Cardiovasc Interv. 2020;13(13):1515-1525. doi:10.1016/j.jcin.2020.04.029PubMedGoogle ScholarCrossref
65.
Jones  DR , Chew  DP , Horsfall  MJ ,  et al.  Multidisciplinary transcatheter aortic valve replacement heart team programme improves mortality in aortic stenosis.   Open Heart. 2019;6(2):e000983. doi:10.1136/openhrt-2018-000983PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close