[Skip to Content]
[Skip to Content Landing]

Emerging Imaging Technologies for Parathyroid Gland Identification and Vascular Assessment in Thyroid SurgeryA Review From the American Head and Neck Society Endocrine Surgery Section

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Identification and preservation of parathyroid glands (PGs) remain challenging despite advances in surgical techniques. Considerable morbidity and even mortality result from hypoparathyroidism caused by devascularization or inadvertent removal of PGs. Emerging imaging technologies hold promise to improve identification and preservation of PGs during thyroid surgery.

Observation  This narrative review (1) comprehensively reviews PG identification and vascular assessment using near-infrared autofluorescence (NIRAF)—both label free and in combination with indocyanine green—based on a comprehensive literature review and (2) offers a manual for possible implementation these emerging technologies in thyroid surgery.

Conclusions and Relevance  Emerging technologies hold promise to improve PG identification and preservation during thyroidectomy. Future research should address variables affecting the degree of fluorescence in NIRAF, standardization of signal quantification, definitions and standardization of parameters of indocyanine green injection that correlate with postoperative PG function, the financial effect of these emerging technologies on near-term and longer-term costs, the adoption learning curve and effect on surgical training, and long-term outcomes of key quality metrics in adequately powered randomized clinical trials evaluating PG preservation.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: November 15, 2022.

Published Online: January 12, 2023. doi:10.1001/jamaoto.2022.4421

Corresponding Author: Amanda L. Silver Karcioglu, MD, Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, NorthShore University HealthSystem, 9669 Kenton Ave, Ste 206, Skokie, IL 60076 (amandalsilver@gmail.com).

Conflict of Interest Disclosures: Dr Triponez reported personal fees (consulting fees paid to institution) from Medtronic, Fluoptics, and Stryker during the conduct of the study. Dr Almquist reported grants from IPSEN and Medtronic outside the submitted work. Dr Benmiloud reported personal fees from Fluoptics (consulting) outside the submitted work. Dr Berber reported personal fees from Aesculap, Medtronic, Johnson & Johnson, and Intuitive outside the submitted work. Dr Cha reported grants from Children’s National Hospital (NIH 2 R44 EB030874-02) during the conduct of the study; grants from Optosurgical (NIH 2 R44 EB030874-02) outside the submitted work; a patent for US17/854,084 pending; and is the founder and scientific advisor for Optosurgical and has a financial interest with the company. Dr Mahadevan-Jansen reported grants from Medtronic (in-kind) during the conduct of the study; in addition, Dr Mahadevan-Jansen has a patent for NIRAF for parathyroid detection that is licensed by her institution to Medtronic. Dr Mannstadt reported grants from Takeda and Calcilytix and personal fees from Amolyt outside the submitted work. Dr Singer is a consultant for Medtronic outside the submitted work. Dr Thomas reported affiliation with Vanderbilt University, which has a licensing agreement for PTeye with Ai Biomed (now officially acquired by Medtronic). Dr Randolph reported grants (research support) from Fluoptics, Medtronic, and Eisai during the conduct of the study; Dr Randolph also reported serving as the president of the International Thyroid Oncology Group and the World Congress on Thyroid Cancer, chair of the Administrative Division of the American Head and Neck Society, and American College of Surgeons Otolaryngology Governor. No other disclosures were reported.

Additional Contributions: We thank Garyfallia Pagonis, BFA, BS (Massachusetts Eye and Ear Infirmary), for her assistance in the preparation of tables and figures, as well as Louise Collins, DVM, MSLIS (Massachusetts Eye and Ear Infirmary), for her assistance with building the search strategy of the literature review. They were not compensated for their contributions. Dr Randolph would like to acknowledge the ongoing support of Mike and Eliz Ruane and of John and Claire Bertucci for his research efforts.

Disclaimer: Dr Davies is an Associate Editor of JAMA Otolaryngology–Head & Neck Surgery but was not involved in any of the decisions regarding review of the manuscript or its acceptance.

References
1.
Brandi  ML , Bilezikian  JP , Shoback  D ,  et al.  Management of hypoparathyroidism: summary statement and guidelines.   J Clin Endocrinol Metab. 2016;101(6):2273-2283. doi:10.1210/jc.2015-3907PubMedGoogle ScholarCrossref
2.
Annebäck  M , Hedberg  J , Almquist  M , Stålberg  P , Norlén  O .  Risk of permanent hypoparathyroidism after total thyroidectomy for benign disease: a nationwide population-based cohort study from Sweden.   Ann Surg. 2021;274(6):e1202-e1208. doi:10.1097/SLA.0000000000003800PubMedGoogle ScholarCrossref
3.
Almquist  M , Ivarsson  K , Nordenström  E , Bergenfelz  A .  Mortality in patients with permanent hypoparathyroidism after total thyroidectomy.   Br J Surg. 2018;105(10):1313-1318. doi:10.1002/bjs.10843PubMedGoogle ScholarCrossref
4.
Demarchi  MS , Seeliger  B , Lifante  JC , Alesina  PF , Triponez  F .  Fluorescence image-guided surgery for thyroid cancer: utility for preventing hypoparathyroidism.   Cancers (Basel). 2021;13(15):3792. doi:10.3390/cancers13153792PubMedGoogle ScholarCrossref
5.
Edafe  O , Sandler  LM , Beasley  N , Balasubramanian  SP .  Systematic review of incidence, risk factors, prevention and treatment of post-laryngectomy hypoparathyroidism.   Eur Arch Otorhinolaryngol. 2021;278(5):1337-1344. doi:10.1007/s00405-020-06213-2PubMedGoogle ScholarCrossref
6.
Bergenfelz  A , Nordenström  E , Almquist  M .  Morbidity in patients with permanent hypoparathyroidism after total thyroidectomy.   Surgery. 2020;167(1):124-128. doi:10.1016/j.surg.2019.06.056PubMedGoogle ScholarCrossref
7.
Underbjerg  L , Sikjaer  T , Mosekilde  L , Rejnmark  L .  Cardiovascular and renal complications to postsurgical hypoparathyroidism: a Danish nationwide controlled historic follow-up study.   J Bone Miner Res. 2013;28(11):2277-2285. doi:10.1002/jbmr.1979PubMedGoogle ScholarCrossref
8.
Gosmanova  EO , Houillier  P , Rejnmark  L , Marelli  C , Bilezikian  JP .  Renal complications in patients with chronic hypoparathyroidism on conventional therapy: a systematic literature review: renal disease in chronic hypoparathyroidism.   Rev Endocr Metab Disord. 2021;22(2):297-316. doi:10.1007/s11154-020-09613-1PubMedGoogle ScholarCrossref
9.
Stack  BCJ  Jr , Bimston  DN , Bodenner  DL ,  et al.  American Association of Clinical Endocrinologists and American College of Endocrinology disease state clinical review: postoperative hypoparathyroidism—definitions and management.   Endocr Pract. 2015;21(6):674-685. doi:10.4158/EP14462.DSCPubMedGoogle ScholarCrossref
10.
Orloff  LA , Wiseman  SM , Bernet  VJ ,  et al.  American Thyroid Association statement on postoperative hypoparathyroidism: diagnosis, prevention, and management in adults.   Thyroid. 2018;28(7):830-841. doi:10.1089/thy.2017.0309PubMedGoogle ScholarCrossref
11.
Hartogsohn  EAR , Khan  AA , Kjaersulf  LU , Sikjaer  T , Hussain  S , Rejnmark  L .  Changes in treatment needs of hypoparathyroidism during pregnancy and lactation: a case series.   Clin Endocrinol (Oxf). 2020;93(3):261-268. doi:10.1111/cen.14212PubMedGoogle ScholarCrossref
12.
Corbeels  K , Steenackers  N , Lannoo  M ,  et al.  Reversal of Roux-en-Y gastric bypass fails to facilitate the management of recalcitrant hypocalcaemia caused by primary hypoparathyroidism.   Obes Surg. 2020;30(12):5150-5152. doi:10.1007/s11695-020-04903-8PubMedGoogle ScholarCrossref
13.
Zaarour  M , Zaharia  R , Bretault  M ,  et al.  Laparoscopic revision of bariatric surgeries in two patients with severe resistant hypocalcemia after endocrine cervical surgery.   Obes Surg. 2020;30(4):1616-1620. doi:10.1007/s11695-019-04132-8PubMedGoogle ScholarCrossref
14.
US Food and Drug Administration. FDA permits marketing of two devices that detect parathyroid tissue in real-time during surgery. News release. November 2, 2018. Accessed November 30, 2018. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-two-devices-detect-parathyroid-tissue-real-time-during-surgery
15.
De Leeuw  F , Breuskin  I , Abbaci  M ,  et al.  Intraoperative near-infrared imaging for parathyroid gland identification by auto-fluorescence: a feasibility study.   World J Surg. 2016;40(9):2131-2138. doi:10.1007/s00268-016-3571-5PubMedGoogle ScholarCrossref
16.
Kahramangil  B , Dip  F , Benmiloud  F ,  et al.  Detection of parathyroid autofluorescence using near-infrared imaging: a multicenter analysis of concordance between different surgeons.   Ann Surg Oncol. 2018;25(4):957-962. doi:10.1245/s10434-018-6364-2PubMedGoogle ScholarCrossref
17.
Dip  F , Falco  J , Verna  S ,  et al.  Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy.   J Am Coll Surg. 2019;228(5):744-751. doi:10.1016/j.jamcollsurg.2018.12.044PubMedGoogle ScholarCrossref
18.
McWade  MA , Sanders  ME , Broome  JT , Solórzano  CC , Mahadevan-Jansen  A .  Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection.   Surgery. 2016;159(1):193-202. doi:10.1016/j.surg.2015.06.047PubMedGoogle ScholarCrossref
19.
Thomas  G , Squires  MH , Metcalf  T , Mahadevan-Jansen  A , Phay  JE .  Imaging or fiber probe-based approach? assessing different methods to detect near infrared autofluorescence for intraoperative parathyroid identification.   J Am Coll Surg. 2019;229(6):596-608.e3. doi:10.1016/j.jamcollsurg.2019.09.003PubMedGoogle ScholarCrossref
20.
Thomas  G , McWade  MA , Nguyen  JQ ,  et al.  Innovative surgical guidance for label-free real-time parathyroid identification.   Surgery. 2019;165(1):114-123. doi:10.1016/j.surg.2018.04.079PubMedGoogle ScholarCrossref
21.
Ladurner  R , Al Arabi  N , Guendogar  U , Hallfeldt  K , Stepp  H , Gallwas  J .  Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery.   Ann R Coll Surg Engl. 2018;100(1):33-36. doi:10.1308/rcsann.2017.0102PubMedGoogle ScholarCrossref
22.
Kahramangil  B , Berber  E .  Comparison of indocyanine green fluorescence and parathyroid autofluorescence imaging in the identification of parathyroid glands during thyroidectomy.   Gland Surg. 2017;6(6):644-648. doi:10.21037/gs.2017.09.04PubMedGoogle ScholarCrossref
23.
Kim  SW , Song  SH , Lee  HS ,  et al.  Intraoperative real-time localization of normal parathyroid glands with autofluorescence imaging.   J Clin Endocrinol Metab. 2016;101(12):4646-4652. doi:10.1210/jc.2016-2558PubMedGoogle ScholarCrossref
24.
Kose  E , Rudin  AV , Kahramangil  B ,  et al.  Autofluorescence imaging of parathyroid glands: an assessment of potential indications.   Surgery. 2020;167(1):173-179. doi:10.1016/j.surg.2019.04.072PubMedGoogle ScholarCrossref
25.
DiMarco  A , Chotalia  R , Bloxham  R , McIntyre  C , Tolley  N , Palazzo  FF .  Autofluorescence in parathyroidectomy: signal intensity correlates with serum calcium and parathyroid hormone but routine clinical use is not justified.   World J Surg. 2019;43(6):1532-1537. doi:10.1007/s00268-019-04929-9PubMedGoogle ScholarCrossref
26.
McWade  MA , Paras  C , White  LM ,  et al.  Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging.   J Clin Endocrinol Metab. 2014;99(12):4574-4580. doi:10.1210/jc.2014-2503PubMedGoogle ScholarCrossref
27.
Kim  SW , Lee  HS , Ahn  YC ,  et al.  Near-infrared autofluorescence image-guided parathyroid gland mapping in thyroidectomy.   J Am Coll Surg. 2018;226(2):165-172. doi:10.1016/j.jamcollsurg.2017.10.015PubMedGoogle ScholarCrossref
28.
Kim  Y , Kim  SW , Lee  KD , Ahn  YC .  Video-assisted parathyroid gland mapping with autofocusing.   J Biophotonics. 2019;12(12):e201900017. doi:10.1002/jbio.201900017PubMedGoogle ScholarCrossref
29.
Wang  B , Zhu  CR , Liu  H , Yao  XM , Wu  J .  The accuracy of near infrared autofluorescence in identifying parathyroid gland during thyroid and parathyroid surgery: a meta-analysis.   Front Endocrinol (Lausanne). 2021;12:701253. doi:10.3389/fendo.2021.701253PubMedGoogle ScholarCrossref
30.
Kim  DH , Lee  S , Jung  J , Kim  S , Kim  SW , Hwang  SH .  Near-infrared autofluorescence-based parathyroid glands identification in the thyroidectomy or parathyroidectomy: a systematic review and meta-analysis.   Langenbecks Arch Surg. 2022;407(2):491-499. doi:10.1007/s00423-021-02269-8PubMedGoogle ScholarCrossref
31.
Ladurner  R , Sommerey  S , Arabi  NA , Hallfeldt  KKJ , Stepp  H , Gallwas  JKS .  Intraoperative near-infrared autofluorescence imaging of parathyroid glands.   Surg Endosc. 2017;31(8):3140-3145. doi:10.1007/s00464-016-5338-3PubMedGoogle ScholarCrossref
32.
Falco  J , Dip  F , Quadri  P , de la Fuente  M , Prunello  M , Rosenthal  RJ .  Increased identification of parathyroid glands using near infrared light during thyroid and parathyroid surgery.   Surg Endosc. 2017;31(9):3737-3742. doi:10.1007/s00464-017-5424-1PubMedGoogle ScholarCrossref
33.
DiMarco  A , Chotalia  R , Bloxham  R , McIntyre  C , Tolley  N , Palazzo  FF .  Does fluoroscopy prevent inadvertent parathyroidectomy in thyroid surgery?   Ann R Coll Surg Engl. 2019;101(7):508-513. doi:10.1308/rcsann.2019.0065PubMedGoogle ScholarCrossref
34.
Kim  YS , Erten  O , Kahramangil  B , Aydin  H , Donmez  M , Berber  E .  The impact of near infrared fluorescence imaging on parathyroid function after total thyroidectomy.   J Surg Oncol. 2020;122(5):973-979. doi:10.1002/jso.26098PubMedGoogle ScholarCrossref
35.
Benmiloud  F , Godiris-Petit  G , Gras  R ,  et al.  Association of autofluorescence-based detection of the parathyroid glands during total thyroidectomy with postoperative hypocalcemia risk: results of the PARAFLUO multicenter randomized clinical trial.   JAMA Surg. 2020;155(2):106-112. doi:10.1001/jamasurg.2019.4613PubMedGoogle ScholarCrossref
36.
Van Slycke  S , Van Den Heede  K , Brusselaers  N , Vermeersch  H .  Feasibility of autofluorescence for parathyroid glands during thyroid surgery and the risk of hypocalcemia: first results in Belgium and review of the literature.   Surg Innov. 2021;28(4):409-418. doi:10.1177/1553350620980263PubMedGoogle ScholarCrossref
37.
Papavramidis  TS , Chorti  A , Tzikos  G ,  et al.  The effect of intraoperative autofluorescence monitoring on unintentional parathyroid gland excision rates and postoperative PTH concentrations-a single-blind randomized-controlled trial.   Endocrine. 2021;72(2):546-552. doi:10.1007/s12020-020-02599-5PubMedGoogle ScholarCrossref
38.
Solórzano  CC , Thomas  G , Baregamian  N , Mahadevan-Jansen  A .  Detecting the near infrared autofluorescence of the human parathyroid: hype or opportunity?   Ann Surg. 2020;272(6):973-985. doi:10.1097/SLA.0000000000003700PubMedGoogle ScholarCrossref
39.
Alesina  PF , Meier  B , Hinrichs  J , Mohmand  W , Walz  MK .  Enhanced visualization of parathyroid glands during video-assisted neck surgery.   Langenbecks Arch Surg. 2018;403(3):395-401. doi:10.1007/s00423-018-1665-2PubMedGoogle ScholarCrossref
40.
Yu  HW , Chung  JW , Yi  JW ,  et al.  Intraoperative localization of the parathyroid glands with indocyanine green and Firefly(R) technology during BABA robotic thyroidectomy.   Surg Endosc. 2017;31(7):3020-3027. doi:10.1007/s00464-016-5330-yPubMedGoogle ScholarCrossref
41.
Kahramangil  B , Berber  E .  The use of near-infrared fluorescence imaging in endocrine surgical procedures.   J Surg Oncol. 2017;115(7):848-855. doi:10.1002/jso.24583PubMedGoogle ScholarCrossref
42.
Spartalis  E , Ntokos  G , Georgiou  K ,  et al.  Intraoperative indocyanine green (ICG) angiography for the identification of the parathyroid glands: current evidence and future perspectives.   In Vivo. 2020;34(1):23-32. doi:10.21873/invivo.11741PubMedGoogle ScholarCrossref
43.
Abbaci  M , De Leeuw  F , Breuskin  I ,  et al.  Parathyroid gland management using optical technologies during thyroidectomy or parathyroidectomy: a systematic review.   Oral Oncol. 2018;87:186-196. doi:10.1016/j.oraloncology.2018.11.011PubMedGoogle ScholarCrossref
44.
Goldenberg  D , Ferris  RL , Shindo  ML , Shaha  A , Stack  B , Tufano  RP .  Thyroidectomy in patients who have undergone gastric bypass surgery.   Head Neck. 2018;40(6):1237-1244. doi:10.1002/hed.25098PubMedGoogle ScholarCrossref
45.
Vidal Fortuny  J , Sadowski  SM , Belfontali  V ,  et al.  Randomized clinical trial of intraoperative parathyroid gland angiography with indocyanine green fluorescence predicting parathyroid function after thyroid surgery.   Br J Surg. 2018;105(4):350-357. doi:10.1002/bjs.10783PubMedGoogle ScholarCrossref
46.
Vidal Fortuny  J , Belfontali  V , Sadowski  SM , Karenovics  W , Guigard  S , Triponez  F .  Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery.   Br J Surg. 2016;103(5):537-543. doi:10.1002/bjs.10101PubMedGoogle ScholarCrossref
47.
Zaidi  N , Bucak  E , Yazici  P ,  et al.  The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy.   J Surg Oncol. 2016;113(7):775-778. doi:10.1002/jso.24237PubMedGoogle ScholarCrossref
48.
Demarchi  MS , Baccaro  M , Karenovics  W , Bédat  B , Triponez  F .  Is the indocyanine green score an accurate predictor of postoperative parathyroid hormone level?   Surgery. 2022;171(6):1526-1534. doi:10.1016/j.surg.2021.12.036PubMedGoogle ScholarCrossref
49.
Vidal Fortuny  J , Sadowski  SM , Belfontali  V , Karenovics  W , Guigard  S , Triponez  F .  Indocyanine green angiography in subtotal parathyroidectomy: technique for the function of the parathyroid remnant.   J Am Coll Surg. 2016;223(5):e43-e49. doi:10.1016/j.jamcollsurg.2016.08.540PubMedGoogle ScholarCrossref
50.
Lang  BHH , Wong  CKH , Hung  HT , Wong  KP , Mak  KL , Au  KB .  Indocyanine green fluorescence angiography for quantitative evaluation of in situ parathyroid gland perfusion and function after total thyroidectomy.   Surgery. 2017;161(1):87-95. doi:10.1016/j.surg.2016.03.037PubMedGoogle ScholarCrossref
51.
Jin  H , Dong  Q , He  Z , Fan  J , Liao  K , Cui  M .  Research on indocyanine green angiography for predicting postoperative hypoparathyroidism.   Clin Endocrinol (Oxf). 2019;90(3):487-493. doi:10.1111/cen.13925PubMedGoogle ScholarCrossref
52.
van den Bos  J , van Kooten  L , Engelen  SME , Lubbers  T , Stassen  LPS , Bouvy  ND .  Feasibility of indocyanine green fluorescence imaging for intraoperative identification of parathyroid glands during thyroid surgery.   Head Neck. 2019;41(2):340-348. doi:10.1002/hed.25451PubMedGoogle ScholarCrossref
53.
Razavi  AC , Ibraheem  K , Haddad  A ,  et al.  Efficacy of indocyanine green fluorescence in predicting parathyroid vascularization during thyroid surgery.   Head Neck. 2019;41(9):3276-3281. doi:10.1002/hed.25837PubMedGoogle ScholarCrossref
54.
Rudin  AV , McKenzie  TJ , Thompson  GB , Farley  DR , Lyden  ML .  Evaluation of parathyroid glands with indocyanine green fluorescence angiography after thyroidectomy.   World J Surg. 2019;43(6):1538-1543. doi:10.1007/s00268-019-04909-zPubMedGoogle ScholarCrossref
55.
Llorente  PM , Francos Martínez  JM , Barrasa  AG .  Intraoperative parathyroid hormone measurement vs indocyanine green angiography of parathyroid glands in prediction of early postthyroidectomy hypocalcemia.   JAMA Surg. 2020;155(1):84-85. doi:10.1001/jamasurg.2019.3652PubMedGoogle ScholarCrossref
56.
Papavramidis  TS , Anagnostis  P , Chorti  A ,  et al.  Do near-infrared intra-operative findings obtained using indocyanine green correlate with post-thyroidectomy parathyroid function? the Icgpredict study.   Endocr Pract. 2020;26(9):967-973. doi:10.4158/EP-2020-0119PubMedGoogle ScholarCrossref
57.
Barbieri  D , Indelicato  P , Vinciguerra  A ,  et al.  Autofluorescence and indocyanine green in thyroid surgery: a systematic review and meta-analysis.   Laryngoscope. 2021;131(7):1683-1692. doi:10.1002/lary.29297PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close