[Skip to Content]
[Skip to Content Landing]

Surgical Site Infection PreventionA Review

To identify the key insights or developments described in this article
1 Credit CME

Importance  Approximately 0.5% to 3% of patients undergoing surgery will experience infection at or adjacent to the surgical incision site. Compared with patients undergoing surgery who do not have a surgical site infection, those with a surgical site infection are hospitalized approximately 7 to 11 days longer.

Observations  Most surgical site infections can be prevented if appropriate strategies are implemented. These infections are typically caused when bacteria from the patient’s endogenous flora are inoculated into the surgical site at the time of surgery. Development of an infection depends on various factors such as the health of the patient’s immune system, presence of foreign material, degree of bacterial wound contamination, and use of antibiotic prophylaxis. Although numerous strategies are recommended by international organizations to decrease surgical site infection, only 6 general strategies are supported by randomized trials. Interventions that are associated with lower rates of infection include avoiding razors for hair removal (4.4% with razors vs 2.5% with clippers); decolonization with intranasal antistaphylococcal agents and antistaphylococcal skin antiseptics for high-risk procedures (0.8% with decolonization vs 2% without); use of chlorhexidine gluconate and alcohol-based skin preparation (4.0% with chlorhexidine gluconate plus alcohol vs 6.5% with povidone iodine plus alcohol); maintaining normothermia with active warming such as warmed intravenous fluids, skin warming, and warm forced air to keep the body temperature warmer than 36 °C (4.7% with active warming vs 13% without); perioperative glycemic control (9.4% with glucose <150 mg/dL vs 16% with glucose >150 mg/dL); and use of negative pressure wound therapy (9.7% with vs 15% without). Guidelines recommend appropriate dosing, timing, and choice of preoperative parenteral antimicrobial prophylaxis.

Conclusions and Relevance  Surgical site infections affect approximately 0.5% to 3% of patients undergoing surgery and are associated with longer hospital stays than patients with no surgical site infections. Avoiding razors for hair removal, maintaining normothermia, use of chlorhexidine gluconate plus alcohol–based skin preparation agents, decolonization with intranasal antistaphylococcal agents and antistaphylococcal skin antiseptics for high-risk procedures, controlling for perioperative glucose concentrations, and using negative pressure wound therapy can reduce the rate of surgical site infections.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Deverick J. Anderson, MD, MPH, DUMC, Box 102359, Durham, NC 27710 (deverick.anderson@duke.edu).

Accepted for Publication: December 13, 2022.

Conflict of Interest Disclosures: Dr Seidelman reported receiving royalties from UpToDate for its Pelvic Osteomyelitis page and providing expert testimony for legal case related to musculoskeletal infections. Dr Mantyh reported receiving personal fees from Becton Dickinson for advising outside the submitted work. Dr Anderson reported receiving grants from the CDC and royalties from UpToDate outside the submitted work; and owning Infection Control Education for Major Sports, LLC.

Surgical site infection event (SSI). National Healthcare Safety Network. Accessed April 26, 2022. https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf
Karlsen  OE , Borgen  P , Bragnes  B ,  et al.  Rifampin combination therapy in staphylococcal prosthetic joint infections: a randomized controlled trial.   J Orthop Surg Res. 2020;15(1):365. doi:10.1186/s13018-020-01877-2PubMedGoogle ScholarCrossref
Dencker  EE , Bonde  A , Troelsen  A , Varadarajan  KM , Sillesen  M .  Postoperative complications: an observational study of trends in the United States from 2012 to 2018.   BMC Surg. 2021;21(1):393. doi:10.1186/s12893-021-01392-zPubMedGoogle ScholarCrossref
Seidelman  JL .  Surgical site infection (SSI) trends in community hospitals from 2013 to 2018.   Infect Control Hosp Epidemiol. Published online July 18, 2022. doi:10.1017/ice.2022.135PubMedGoogle ScholarCrossref
Gantz  O , Zagadailov  P , Merchant  AM .  The cost of surgical site infections after colorectal surgery in the United States from 2001 to 2012: a longitudinal analysis.   Am Surg. 2019;85(2):142-149. doi:10.1177/000313481908500219PubMedGoogle ScholarCrossref
Magill  SS , Edwards  JR , Bamberg  W ,  et al; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team.  Multistate point-prevalence survey of health care–associated infections.   N Engl J Med. 2014;370(13):1198-1208. doi:10.1056/NEJMoa1306801PubMedGoogle ScholarCrossref
Zimlichman  E , Henderson  D , Tamir  O ,  et al.  Health care–associated infections: a meta-analysis of costs and financial impact on the US health care system.   JAMA Intern Med. 2013;173(22):2039-2046. doi:10.1001/jamainternmed.2013.9763PubMedGoogle ScholarCrossref
O’Hara  LM , Thom  KA , Preas  MA .  Update to the Centers for Disease Control and Prevention and the Healthcare Infection Control Practices Advisory Committee Guideline for the prevention of surgical site infection (2017): a summary, review, and strategies for implementation.   Am J Infect Control. 2018;46(6):602-609. doi:10.1016/j.ajic.2018.01.018PubMedGoogle ScholarCrossref
Scott  RD . The Direct Medical Costs of Healthcare–Associated Infections in US Hospitals and the Benefits of Prevention. Centers for Disease Control and Prevention; March 2009. Publication CS200891-A. Accessed April 28, 2022. https://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf
Anderson  DJ , Kaye  KS , Chen  LF ,  et al.  Clinical and financial outcomes due to methicillin resistant Staphylococcus aureus surgical site infection: a multi-center matched outcomes study.   PLoS One. 2009;4(12):e8305. doi:10.1371/journal.pone.0008305PubMedGoogle ScholarCrossref
Ming  DY , Chen  LF , Miller  BA , Anderson  DJ .  The impact of depth of infection and postdischarge surveillance on rate of surgical-site infections in a network of community hospitals.   Infect Control Hosp Epidemiol. 2012;33(3):276-282. doi:10.1086/664053PubMedGoogle ScholarCrossref
Wenzel  RP .  Surgical site infections and the microbiome: an updated perspective.   Infect Control Hosp Epidemiol. 2019;40(5):590-596. doi:10.1017/ice.2018.363PubMedGoogle ScholarCrossref
Seidelman  JL , Baker  AW , Lewis  SS , Advani  SD , Smith  B , Anderson  D ; Duke Infection Control Outreach Network Surveillance Team.  Surgical site infection trends in community hospitals from 2013 to 2018.   Infect Control Hosp Epidemiol. Published online July 2022. doi:10.1017/ice.2022.135PubMedGoogle ScholarCrossref
Leaper  DJ , Edmiston  CE .  World Health Organization: global guidelines for the prevention of surgical site infection.   J Hosp Infect. 2017;95(2):135-136. doi:10.1016/j.jhin.2016.12.016PubMedGoogle ScholarCrossref
Seidelman  JL , Ge  M , Baker  AW ,  et al.  Colon surgical–site infections and the impact of “present at the time of surgery (PATOS)” in a large network of community hospitals.   Infect Control Hosp Epidemiol. Published online September 22 2022. doi:10.1017/ice.2022.236PubMedGoogle ScholarCrossref
Zhang  Y , Zheng  QJ , Wang  S ,  et al.  Diabetes mellitus is associated with increased risk of surgical site infections: a meta-analysis of prospective cohort studies.   Am J Infect Control. 2015;43(8):810-815. doi:10.1016/j.ajic.2015.04.003PubMedGoogle ScholarCrossref
Ban  KA , Minei  JP , Laronga  C ,  et al.  American College of Surgeons and Surgical Infection Society: surgical site infection guidelines, 2016 update.   J Am Coll Surg. 2017;224(1):59-74. doi:10.1016/j.jamcollsurg.2016.10.029PubMedGoogle ScholarCrossref
Filsoufi  F , Rahmanian  PB , Castillo  JG , Pinney  S , Broumand  SR , Adams  DH .  Incidence, treatment strategies and outcome of deep sternal wound infection after orthotopic heart transplantation.   J Heart Lung Transplant. 2007;26(11):1084-1090. doi:10.1016/j.healun.2007.07.036PubMedGoogle ScholarCrossref
Payne  WG , Naidu  DK , Wheeler  CK ,  et al.  Wound healing in patients with cancer.   Eplasty. 2008;8:e9.PubMedGoogle Scholar
Hennessey  DB , Burke  JP , Ni-Dhonochu  T , Shields  C , Winter  DC , Mealy  K .  Preoperative hypoalbuminemia is an independent risk factor for the development of surgical site infection following gastrointestinal surgery: a multi-institutional study.   Ann Surg. 2010;252(2):325-329. doi:10.1097/SLA.0b013e3181e9819aPubMedGoogle ScholarCrossref
Meijs  AP , Koek  MBG , Vos  MC , Geerlings  SE , Vogely  HC , de Greeff  SC .  The effect of body mass index on the risk of surgical site infection.   Infect Control Hosp Epidemiol. 2019;40(9):991-996. doi:10.1017/ice.2019.165PubMedGoogle ScholarCrossref
Harrington  G , Russo  P , Spelman  D ,  et al.  Surgical-site infection rates and risk factor analysis in coronary artery bypass graft surgery.   Infect Control Hosp Epidemiol. 2004;25(6):472-476. doi:10.1086/502424PubMedGoogle ScholarCrossref
Yuan  K , Chen  HL .  Obesity and surgical site infections risk in orthopedics: a meta-analysis.   Int J Surg. 2013;11(5):383-388. doi:10.1016/j.ijsu.2013.02.018PubMedGoogle ScholarCrossref
Mangram  AJ , Horan  TC , Pearson  ML , Silver  LC , Jarvis  WR ; Hospital Infection Control Practices Advisory Committee.  Guideline for prevention of surgical site infection, 1999.   Infect Control Hosp Epidemiol. 1999;20(4):250-278. doi:10.1086/501620PubMedGoogle ScholarCrossref
Wukich  DK , McMillen  RL , Lowery  NJ , Frykberg  RG .  Surgical site infections after foot and ankle surgery: a comparison of patients with and without diabetes.   Diabetes Care. 2011;34(10):2211-2213. doi:10.2337/dc11-0846PubMedGoogle ScholarCrossref
Kaye  KS , Anderson  DJ , Sloane  R ,  et al.  The effect of surgical site infection on older operative patients.   J Am Geriatr Soc. 2009;57(1):46-54. doi:10.1111/j.1532-5415.2008.02053.xPubMedGoogle ScholarCrossref
Roig-Rosello  E , Rousselle  P .  The human epidermal basement membrane: a shaped and cell instructive platform that aging slowly alters.   Biomolecules. 2020;10(12):1607. doi:10.3390/biom10121607PubMedGoogle ScholarCrossref
Faraday  N , Rock  P , Lin  EE ,  et al.  Past history of skin infection and risk of surgical site infection after elective surgery.   Ann Surg. 2013;257(1):150-154. doi:10.1097/SLA.0b013e3182588abfPubMedGoogle ScholarCrossref
Edmiston  CE  Jr , Seabrook  GR , Cambria  RA ,  et al.  Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection?   Surgery. 2005;138(4):573-579. doi:10.1016/j.surg.2005.06.045PubMedGoogle ScholarCrossref
Lidwell  OM , Lowbury  EJ , Whyte  W , Blowers  R , Stanley  SJ , Lowe  D .  Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates.   J Hosp Infect. 1983;4(2):111-131. doi:10.1016/0195-6701(83)90041-5PubMedGoogle ScholarCrossref
Wang  Z , Anderson  FA  Jr , Ward  M , Bhattacharyya  T .  Surgical site infections and other postoperative complications following prophylactic anticoagulation in total joint arthroplasty.   PLoS One. 2014;9(4):e91755. doi:10.1371/journal.pone.0091755PubMedGoogle ScholarCrossref
Rohde  JM , Dimcheff  DE , Blumberg  N ,  et al.  Health care–associated infection after red blood cell transfusion: a systematic review and meta-analysis.   JAMA. 2014;311(13):1317-1326. doi:10.1001/jama.2014.2726PubMedGoogle ScholarCrossref
Wetterslev  J , Meyhoff  CS , Jørgensen  LN , Gluud  C , Lindschou  J , Rasmussen  LS .  The effects of high perioperative inspiratory oxygen fraction for adult surgical patients.   Cochrane Database Syst Rev. 2015;(6):CD008884. doi:10.1002/14651858.CD008884.pub2PubMedGoogle ScholarCrossref
Hopf  HW , Holm  J .  Hyperoxia and infection.   Best Pract Res Clin Anaesthesiol. 2008;22(3):553-569. doi:10.1016/j.bpa.2008.06.001PubMedGoogle ScholarCrossref
Berard  F , Gandon  J .  Postoperative wound infections: the influence of ultraviolet irradiation of the operating room and of various other factors.   Ann Surg. 1964;160(suppl 2):1-192.PubMedGoogle Scholar
Elek  SD , Conen  PE .  The virulence of Staphylococcus pyogenes for man: a study of the problems of wound infection.   Br J Exp Pathol. 1957;38(6):573-586.PubMedGoogle Scholar
Korol  E , Johnston  K , Waser  N ,  et al.  A systematic review of risk factors associated with surgical site infections among surgical patients.   PLoS One. 2013;8(12):e83743. doi:10.1371/journal.pone.0083743PubMedGoogle ScholarCrossref
Kurz  A , Sessler  DI , Lenhardt  R ; Study of Wound Infection and Temperature Group.  Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization.   N Engl J Med. 1996;334(19):1209-1215. doi:10.1056/NEJM199605093341901PubMedGoogle ScholarCrossref
Latham  R , Lancaster  AD , Covington  JF , Pirolo  JS , Thomas  CS  Jr .  The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients.   Infect Control Hosp Epidemiol. 2001;22(10):607-612. doi:10.1086/501830PubMedGoogle ScholarCrossref
Mangram  AJ , Horan  TC , Pearson  ML , Silver  LC , Jarvis  WR , Committee HICPA; Hospital Infection Control Practices Advisory Committee.  Guideline for prevention of surgical site infection, 1999.   Infect Control Hosp Epidemiol. 1999;20(4):250-278. doi:10.1086/501620PubMedGoogle ScholarCrossref
Dumville  JC , Gray  TA , Walter  CJ ,  et al.  Dressings for the prevention of surgical site infection.   Cochrane Database Syst Rev. 2016;12(12):CD003091. doi:10.1002/14651858.CD003091.pub4PubMedGoogle ScholarCrossref
Manian  FA .  The role of postoperative factors in surgical site infections: time to take notice.   Clin Infect Dis. 2014;59(9):1272-1276. doi:10.1093/cid/ciu552PubMedGoogle ScholarCrossref
McLaws  ML , Murphy  C , Whitby  M ; Hospital Infection Standardised Surveillance.  Standardising surveillance of nosocomial infections: the HISS program.   J Qual Clin Pract. 2000;20(1):6-11. doi:10.1046/j.1440-1762.2000.00347.xPubMedGoogle ScholarCrossref
Tammelin  A , Hambraeus  A , Ståhle  E .  Source and route of methicillin-resistant Staphylococcus epidermidis transmitted to the surgical wound during cardio-thoracic surgery: possibility of preventing wound contamination by use of special scrub suits.   J Hosp Infect. 2001;47(4):266-276. doi:10.1053/jhin.2000.0914PubMedGoogle ScholarCrossref
Lee  KY , Coleman  K , Paech  D , Norris  S , Tan  JT .  The epidemiology and cost of surgical site infections in Korea: a systematic review.   J Korean Surg Soc. 2011;81(5):295-307. doi:10.4174/jkss.2011.81.5.295PubMedGoogle ScholarCrossref
Fagernes  M , Lingaas  E .  Factors interfering with the microflora on hands: a regression analysis of samples from 465 healthcare workers.   J Adv Nurs. 2011;67(2):297-307. doi:10.1111/j.1365-2648.2010.05462.xPubMedGoogle ScholarCrossref
Loftus  RW , Muffly  MK , Brown  JR ,  et al.  Hand contamination of anesthesia providers is an important risk factor for intraoperative bacterial transmission.   Anesth Analg. 2011;112(1):98-105. doi:10.1213/ANE.0b013e3181e7ce18PubMedGoogle ScholarCrossref
Kotagal  M , Symons  RG , Hirsch  IB ,  et al; SCOAP-CERTAIN Collaborative.  Perioperative hyperglycemia and risk of adverse events among patients with and without diabetes.   Ann Surg. 2015;261(1):97-103. doi:10.1097/SLA.0000000000000688PubMedGoogle ScholarCrossref
Aghdassi  SJS , Schröder  C , Gastmeier  P .  Gender-related risk factors for surgical site infections: results from 10 years of surveillance in Germany.   Antimicrob Resist Infect Control. 2019;8:95. doi:10.1186/s13756-019-0547-xPubMedGoogle ScholarCrossref
Anderson  DJ , Arduino  JM , Reed  SD ,  et al.  Variation in the type and frequency of postoperative invasive Staphylococcus aureus infections according to type of surgical procedure.   Infect Control Hosp Epidemiol. 2010;31(7):701-709. doi:10.1086/653205PubMedGoogle ScholarCrossref
Ghosh  S , Charity  RM , Haidar  SG , Singh  BK .  Pyrexia following total knee replacement.   Knee. 2006;13(4):324-327. doi:10.1016/j.knee.2006.05.001PubMedGoogle ScholarCrossref
Zajonz  D , Wuthe  L , Tiepolt  S ,  et al.  Diagnostic work-up strategy for periprosthetic joint infections after total hip and knee arthroplasty: a 12-year experience on 320 consecutive cases.   Patient Saf Surg. 2015;9:20. doi:10.1186/s13037-015-0071-8PubMedGoogle ScholarCrossref
Berbari  EF , Hanssen  AD , Duffy  MC ,  et al.  Risk factors for prosthetic joint infection: case-control study.   Clin Infect Dis. 1998;27(5):1247-1254. doi:10.1086/514991PubMedGoogle ScholarCrossref
Berbari  EF , Osmon  DR , Carr  A ,  et al.  Dental procedures as risk factors for prosthetic hip or knee infection: a hospital-based prospective case-control study.   Clin Infect Dis. 2010;50(1):8-16. doi:10.1086/648676PubMedGoogle ScholarCrossref
Portillo  ME , Salvadó  M , Sorli  L ,  et al.  Multiplex PCR of sonication fluid accurately differentiates between prosthetic joint infection and aseptic failure.   J Infect. 2012;65(6):541-548. doi:10.1016/j.jinf.2012.08.018PubMedGoogle ScholarCrossref
Tande  AJ , Palraj  BR , Osmon  DR ,  et al.  Clinical presentation, risk factors, and outcomes of hematogenous prosthetic joint infection in patients with staphylococcus aureus bacteremia.   Am J Med. 2016;129(2):221.E11-221.E20. doi:10.1016/j.amjmed.2015.09.006PubMedGoogle ScholarCrossref
Wilson  BM , Bessesen  MT , Doros  G ,  et al.  Adjunctive rifampin therapy for diabetic foot osteomyelitis in the Veterans Health Administration.   JAMA Netw Open. 2019;2(11):e1916003. doi:10.1001/jamanetworkopen.2019.16003PubMedGoogle ScholarCrossref
Zhu  C , Leach  JR , Wang  Y , Gasper  W , Saloner  D , Hope  MD .  Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms.   Radiology. 2020;294(3):707-713. doi:10.1148/radiol.2020191723PubMedGoogle ScholarCrossref
Tanner  J , Melen  K .  Preoperative hair removal to reduce surgical site infection.   Cochrane Database Syst Rev. 2021;8(8):CD004122. doi:10.1002/14651858.CD004122.pub5PubMedGoogle ScholarCrossref
Schweizer  M , Perencevich  E , McDanel  J ,  et al.  Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: systematic review and meta-analysis.   BMJ. 2013;346:f2743. doi:10.1136/bmj.f2743PubMedGoogle ScholarCrossref
Steinberg  JP , Braun  BI , Hellinger  WC ,  et al; Trial to Reduce Antimicrobial Prophylaxis Errors (TRAPE) Study Group.  Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the Trial to Reduce Antimicrobial Prophylaxis Errors.   Ann Surg. 2009;250(1):10-16. doi:10.1097/SLA.0b013e3181ad5fcaPubMedGoogle ScholarCrossref
Bratzler  DW , Dellinger  EP , Olsen  KM ,  et al; American Society of Health-System Pharmacists; Infectious Disease Society of America; Surgical Infection Society; Society for Healthcare Epidemiology of America.  Clinical practice guidelines for antimicrobial prophylaxis in surgery.   Am J Health Syst Pharm. 2013;70(3):195-283. doi:10.2146/ajhp120568PubMedGoogle ScholarCrossref
van Klei  WA , Hoff  RG , van Aarnhem  EE ,  et al.  Effects of the introduction of the WHO “Surgical Safety Checklist” on in-hospital mortality: a cohort study.   Ann Surg. 2012;255(1):44-49. doi:10.1097/SLA.0b013e31823779aePubMedGoogle ScholarCrossref
Weiser  TG , Haynes  AB , Dziekan  G , Berry  WR , Lipsitz  SR , Gawande  AA ; Safe Surgery Saves Lives Investigators and Study Group.  Effect of a 19-item surgical safety checklist during urgent operations in a global patient population.   Ann Surg. 2010;251(5):976-980. doi:10.1097/SLA.0b013e3181d970e3PubMedGoogle ScholarCrossref
Haynes  AB , Weiser  TG , Berry  WR ,  et al; Safe Surgery Saves Lives Study Group.  A surgical safety checklist to reduce morbidity and mortality in a global population.   N Engl J Med. 2009;360(5):491-499. doi:10.1056/NEJMsa0810119PubMedGoogle ScholarCrossref
Hadiati  DR , Hakimi  M , Nurdiati  DS , Masuzawa  Y , da Silva Lopes  K , Ota  E .  Skin preparation for preventing infection following caesarean section.   Cochrane Database Syst Rev. 2020;6(6):CD007462. doi:10.1002/14651858.CD007462.pub5 PubMedGoogle ScholarCrossref
Madrid  E , Urrútia  G , Roqué i Figuls  M ,  et al.  Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults.   Cochrane Database Syst Rev. 2016;4(4):CD009016. doi:10.1002/14651858.CD009016.pub2PubMedGoogle ScholarCrossref
Wang  YY , Hu  SF , Ying  HM ,  et al.  Postoperative tight glycemic control significantly reduces postoperative infection rates in patients undergoing surgery: a meta-analysis.   BMC Endocr Disord. 2018;18(1):42. doi:10.1186/s12902-018-0268-9PubMedGoogle ScholarCrossref
Norman  G , Shi  C , Goh  EL ,  et al.  Negative pressure wound therapy for surgical wounds healing by primary closure.   Cochrane Database Syst Rev. 2022;4(4):CD009261. doi:10.1002/14651858.CD009261.pub7PubMedGoogle ScholarCrossref
Grober  ED , Domes  T , Fanipour  M , Copp  JE .  Preoperative hair removal on the male genitalia: clippers vs razors.   J Sex Med. 2013;10(2):589-594. doi:10.1111/j.1743-6109.2012.02904.xPubMedGoogle ScholarCrossref
Perl  TM , Cullen  JJ , Wenzel  RP ,  et al; Mupirocin and the Risk of Staphylococcus Aureus Study Team.  Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections.   N Engl J Med. 2002;346(24):1871-1877. doi:10.1056/NEJMoa003069PubMedGoogle ScholarCrossref
Harbarth  S , Fankhauser  C , Schrenzel  J ,  et al.  Universal screening for methicillin-resistant Staphylococcus aureus at hospital admission and nosocomial infection in surgical patients.   JAMA. 2008;299(10):1149-1157. doi:10.1001/jama.299.10.1149PubMedGoogle ScholarCrossref
Rennert-May  E , Conly  J , Smith  S ,  et al.  A cost-effectiveness analysis of mupirocin and chlorhexidine gluconate for Staphylococcus aureus decolonization prior to hip and knee arthroplasty in Alberta, Canada, compared to standard of care.   Antimicrob Resist Infect Control. 2019;8:113. doi:10.1186/s13756-019-0568-5PubMedGoogle ScholarCrossref
Kline  SE , Sanstead  EC , Johnson  JR , Kulasingam  SL .  Cost-effectiveness of pre-operative Staphylococcus aureus screening and decolonization.   Infect Control Hosp Epidemiol. 2018;39(11):1340-1346. doi:10.1017/ice.2018.228PubMedGoogle ScholarCrossref
Stambough  JB , Nam  D , Warren  DK ,  et al.  Decreased hospital costs and surgical site infection incidence with a universal decolonization protocol in primary total joint arthroplasty.   J Arthroplasty. 2017;32(3):728-734.e1. doi:10.1016/j.arth.2016.09.041PubMedGoogle ScholarCrossref
Berríos-Torres  SI , Umscheid  CA , Bratzler  DW ,  et al; Healthcare Infection Control Practices Advisory Committee.  Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017.   JAMA Surg. 2017;152(8):784-791. doi:10.1001/jamasurg.2017.0904PubMedGoogle ScholarCrossref
Anderson  DJ , Podgorny  K , Berríos-Torres  SI ,  et al.  Strategies to prevent surgical site infections in acute care hospitals: 2014 update.   Infect Control Hosp Epidemiol. 2014;35(6):605-627. doi:10.1086/676022PubMedGoogle ScholarCrossref
Branch-Elliman  W , O’Brien  W , Strymish  J , Itani  K , Wyatt  C , Gupta  K .  Association of duration and type of surgical prophylaxis with antimicrobial–associated adverse events.   JAMA Surg. 2019;154(7):590-598. doi:10.1001/jamasurg.2019.0569PubMedGoogle ScholarCrossref
McDonald  M , Grabsch  E , Marshall  C , Forbes  A .  Single- versus multiple-dose antimicrobial prophylaxis for major surgery: a systematic review.   Aust N Z J Surg. 1998;68(6):388-396. doi:10.1111/j.1445-2197.1998.tb04785.xPubMedGoogle ScholarCrossref
World Health Organization.  Global Guidelines for the Prevention of Surgical Site Infection. World Health Organization; 2016.
Darouiche  RO , Wall  MJ  Jr , Itani  KM ,  et al.  Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis.   N Engl J Med. 2010;362(1):18-26. doi:10.1056/NEJMoa0810988PubMedGoogle ScholarCrossref
Chen  S , Chen  JW , Guo  B , Xu  CC .  Preoperative antisepsis with chlorhexidine versus povidone-iodine for the prevention of surgical site infection: a systematic review and meta-analysis.   World J Surg. 2020;44(5):1412-1424. doi:10.1007/s00268-020-05384-7PubMedGoogle ScholarCrossref
Kao  LS , Phatak  UR .  Glycemic control and prevention of surgical site infection.   Surg Infect (Larchmt). 2013;14(5):437-444. doi:10.1089/sur.2013.008PubMedGoogle ScholarCrossref
Kiran  RP , Turina  M , Hammel  J , Fazio  V .  The clinical significance of an elevated postoperative glucose value in nondiabetic patients after colorectal surgery: evidence for the need for tight glucose control?   Ann Surg. 2013;258(4):599-604. doi:10.1097/SLA.0b013e3182a501e3PubMedGoogle ScholarCrossref
Zwanenburg  PR , Tol  BT , Obdeijn  MC , Lapid  O , Gans  SL , Boermeester  MA .  Meta-analysis, meta-regression, and GRADE assessment of randomized and nonrandomized studies of incisional negative pressure wound therapy versus control dressings for the prevention of postoperative wound complications.   Ann Surg. 2020;272(1):81-91. doi:10.1097/SLA.0000000000003644PubMedGoogle ScholarCrossref
Haley  RW , Culver  DH , White  JW ,  et al.  The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals.   Am J Epidemiol. 1985;121(2):182-205. doi:10.1093/oxfordjournals.aje.a113990PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity


My Saved Searches

You currently have no searches saved.


My Saved Courses

You currently have no courses saved.