[Skip to Content]
[Skip to Content Landing]

Diagnosis and Treatment of Chronic Lymphocytic LeukemiaA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Chronic lymphocytic leukemia (CLL), defined by a minimum of 5 × 109/L monoclonal B cells in the blood, affects more than 200 000 people and is associated with approximately 4410 deaths in the US annually. CLL is associated with an immunocompromised state and an increased rate of complications from infections.

Observations  At the time of diagnosis, the median age of patients with CLL is 70 years, and an estimated 95% of patients have at least 1 medical comorbidity. Approximately 70% to 80% of patients with CLL are asymptomatic at the time of diagnosis, and one-third will never require treatment for CLL. Prognostic models have been developed to estimate the time to first treatment and the overall survival, but for patients who are asymptomatic, irrespective of disease risk category, clinical observation is the standard of care. Patients with symptomatic disease who have bulky or progressive lymphadenopathy or hepatosplenomegaly and those with a low neutrophil count, anemia, or thrombocytopenia and/or symptoms of fever, drenching night sweats, and weight loss (B symptoms) should be offered treatment. For these patients, first-line treatment consists of a regimen containing either a covalent Bruton tyrosine kinase (BTK) inhibitor (acalabrutinib, zanubrutinib, or ibrutinib) or a B-cell leukemia/lymphoma 2 (BCL2) inhibitor (venetoclax). There is no evidence that starting either class before the other improves outcomes. The covalent BTK inhibitors are typically used indefinitely. Survival rates are approximately 88% at 4 years for acalabrutinib, 94% at 2 years for zanubrutinib, and 78% at 7 years for ibrutinib. Venetoclax is prescribed in combination with obinutuzumab, a monoclonal anti-CD20 antibody, in first-line treatment for 1 year (overall survival, 82% at 5-year follow-up). A noncovalent BTK inhibitor, pitobrutinib, has shown an overall response rate of more than 70% after failure of covalent BTK inhibitors and venetoclax. Phosphoinositide 3′-kinase (PI3K) inhibitors (idelalisib and duvelisib) can be prescribed for disease that progresses with BTK inhibitors and venetoclax, but patients require close monitoring for adverse events such as autoimmune conditions and infections. In patients with multiple relapses, chimeric antigen receptor T-cell (CAR-T) therapy with lisocabtagene maraleucel was associated with a 45% complete response rate. The only potential cure for CLL is allogeneic hematopoietic cell transplant, which remains an option after use of targeted agents.

Conclusions and Relevance  More than 200 000 people in the US are living with a CLL diagnosis, and CLL causes approximately 4410 deaths each year in the US. Approximately two-thirds of patients eventually need treatment. Highly effective novel targeted agents include BTK inhibitors such as acalabrutinib, zanubrutinib, ibrutinib, and pirtobrutinib or BCL2 inhibitors such as venetoclax.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Mazyar Shadman, MD, MPH, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-396, Seattle, WA 98109 (mshadman@fredhutch.org).

Accepted for Publication: February 6, 2023.

Conflict of Interest Disclosures: Dr Shadman reported receiving research grants from Mustang Bio, Bristol Myers Squibb, Pharmacyclics, Genentech, AbbVie, TG Therapeutics, BeiGene, AstraZeneca, Genmab, MorphoSys/Incyte, and Vincerx; serving as a consultant for Abbvie, Genentech, AstraZeneca, Pharmacyclics, Beigene, Bristol Myers Squibb, Morphosys/Incyte, Kite, Eli Lilly, Genmab, Mustang Bio, Regeneron, ADC Therapeutics, Janssen, Fate Therapeutics, and MEI Pharma; and that his spouse is an employee of Bristol Myers Squibb.

References
1.
Cancer Stat Facts: Leukemia—chronic lymphocytic leukemia (CLL). National Cancer Institute. Published 2022. Accessed February 21, 2023. https://seer.cancer.gov/statfacts/html/clyl.html
2.
Siegel  RL , Miller  KD , Fuchs  HE , Jemal  A .  Cancer statistics, 2022.   CA Cancer J Clin. 2022;72(1):7-33. doi:10.3322/caac.21708PubMedGoogle ScholarCrossref
3.
Condoluci  A , Terzi di Bergamo  L , Langerbeins  P ,  et al.  International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia.   Blood. 2020;135(21):1859-1869. doi:10.1182/blood.2019003453PubMedGoogle ScholarCrossref
4.
Brieghel  C , Galle  V , Agius  R ,  et al.  Identifying patients with chronic lymphocytic leukemia without need of treatment: end of endless watch and wait?   Eur J Haematol. 2022;108(5):369-378. doi:10.1111/ejh.13743PubMedGoogle ScholarCrossref
5.
Alaggio  R , Amador  C , Anagnostopoulos  I ,  et al.  The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms.   Leukemia. 2022;36(7):1720-1748.Google ScholarCrossref
6.
Zhang  S , Kipps  TJ .  The pathogenesis of chronic lymphocytic leukemia.   Annu Rev Pathol. 2014;9:103-118. doi:10.1146/annurev-pathol-020712-163955PubMedGoogle ScholarCrossref
7.
Burger  JA .  Treatment of chronic lymphocytic leukemia.   N Engl J Med. 2020;383(5):460-473. doi:10.1056/NEJMra1908213PubMedGoogle ScholarCrossref
8.
García-Muñoz  R , Roldan Galiacho  V , Llorente  L .  Immunological aspects in chronic lymphocytic leukemia (CLL) development.   Ann Hematol. 2012;91(7):981-996. doi:10.1007/s00277-012-1460-zPubMedGoogle ScholarCrossref
9.
Delgado  J , Nadeu  F , Colomer  D , Campo  E .  Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies.   Haematologica. 2020;105(9):2205-2217. doi:10.3324/haematol.2019.236000PubMedGoogle ScholarCrossref
10.
Bosch  F , Dalla-Favera  R .  Chronic lymphocytic leukaemia: from genetics to treatment.   Nat Rev Clin Oncol. 2019;16(11):684-701. doi:10.1038/s41571-019-0239-8PubMedGoogle ScholarCrossref
11.
Crombie  J , Davids  MS .  IGHV mutational status testing in chronic lymphocytic leukemia.   Am J Hematol. 2017;92(12):1393-1397. doi:10.1002/ajh.24808PubMedGoogle ScholarCrossref
12.
Shadman  M , Liu  C , Eakle  K ,  et al.  COVID-19 vaccination response and its practical application in patients with chronic lymphocytic leukemia.   Hemasphere. 2022;7(1):e811. doi:10.1097/HS9.0000000000000811PubMedGoogle ScholarCrossref
13.
Abrisqueta  P , Pereira  A , Rozman  C ,  et al.  Improving survival in patients with chronic lymphocytic leukemia (1980-2008): the Hospital Clinic of Barcelona experience.   Blood. 2009;114(10):2044-2050. doi:10.1182/blood-2009-04-214346PubMedGoogle ScholarCrossref
14.
Nabhan  C , Rosen  ST .  Chronic lymphocytic leukemia: a clinical review.   JAMA. 2014;312(21):2265-2276. doi:10.1001/jama.2014.14553PubMedGoogle ScholarCrossref
15.
Rai  KR , Sawitsky  A , Cronkite  EP , Chanana  AD , Levy  RN , Pasternack  BS .  Clinical staging of chronic lymphocytic leukemia.   Blood. 1975;46(2):219-234. doi:10.1182/blood.V46.2.219.219PubMedGoogle ScholarCrossref
16.
Hallek  M , Cheson  BD , Catovsky  D ,  et al.  iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL.   Blood. 2018;131(25):2745-2760. doi:10.1182/blood-2017-09-806398PubMedGoogle ScholarCrossref
17.
Wierda  WG , Brown  J , Abramson  JS ,  et al.  NCCN Guidelines Insights: chronic lymphocytic leukemia/small lymphocytic lymphoma, version 3.2022.   J Natl Compr Canc Netw. 2022;20(6):622-634. doi:10.6004/jnccn.2022.0031PubMedGoogle Scholar
18.
Fazi  C , Scarfò  L , Pecciarini  L ,  et al.  General population low-count CLL-like MBL persists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL.   Blood. 2011;118(25):6618-6625. doi:10.1182/blood-2011-05-357251PubMedGoogle Scholar
19.
Parikh  SA , Rabe  KG , Kay  NE ,  et al.  The CLL International Prognostic Index predicts outcomes in monoclonal B-cell lymphocytosis and Rai 0 CLL.   Blood. 2021;138(2):149-159. doi:10.1182/blood.2020009813PubMedGoogle Scholar
20.
Binet  JL , Auquier  A , Dighiero  G ,  et al.  A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis.   Cancer. 1981;48(1):198-206. doi:10.1002/1097-0142(19810701)48:1<198::AID-CNCR2820480131>3.0.CO;2-VPubMedGoogle Scholar
21.
Baliakas  P , Espinet  B , Mellink  C ,  et al.  Cytogenetics in chronic lymphocytic leukemia: ERIC perspectives and recommendations.   Hemasphere. 2022;6(4):e707. doi:10.1097/HS9.0000000000000707PubMedGoogle Scholar
22.
Döhner  H , Stilgenbauer  S , Benner  A ,  et al.  Genomic aberrations and survival in chronic lymphocytic leukemia.   N Engl J Med. 2000;343(26):1910-1916. doi:10.1056/NEJM200012283432602PubMedGoogle Scholar
23.
Guièze  R , Robbe  P , Clifford  R ,  et al.  Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL.   Blood. 2015;126(18):2110-2117. doi:10.1182/blood-2015-05-647578PubMedGoogle Scholar
24.
Langerbeins  P , Zhang  C , Robrecht  S ,  et al.  The CLL12 trial: ibrutinib vs placebo in treatment-naïve, early-stage chronic lymphocytic leukemia.   Blood. 2022;139(2):177-187. doi:10.1182/blood.2021010845PubMedGoogle Scholar
25.
Herling  CD , Cymbalista  F , Groß-Ophoff-Müller  C ,  et al.  Early treatment with FCR versus watch and wait in patients with stage Binet A high-risk chronic lymphocytic leukemia (CLL): a randomized phase 3 trial.   Leukemia. 2020;34(8):2038-2050. doi:10.1038/s41375-020-0747-7PubMedGoogle Scholar
26.
Pneumococcal vaccine timing for adults. Centers for Disease Control and Prevention Published February 8, 2022. Accessed February 22, 2023. https://www.cdc.gov/vaccines/vpd/pneumo/downloads/pneumo-vaccine-timing.pdf
27.
COVID-19 vaccines for people who are moderately or severely immunocompromised. Centers for Disease Control and Prevention. Updated January 31, 2023. Accessed February 22, 2023. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html
28.
Chronic lymphocytic leukemia/small lymphocytic lymphoma (version 1.2023) National Comprehensive Cancer Network. Published 2023. https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf
29.
Greenberger  LM , Saltzman  LA , Gruenbaum  LM ,  et al.  Anti-spike T-cell and antibody responses to SARS-CoV-2 mRNA vaccines in patients with hematologic malignancies.   Blood Cancer Discov. 2022;3(6):481-489. doi:10.1158/2643-3230.BCD-22-0077PubMedGoogle Scholar
30.
Mehrany  K , Weenig  RH , Pittelkow  MR , Roenigk  RK , Otley  CC .  High recurrence rates of squamous cell carcinoma after Mohs’ surgery in patients with chronic lymphocytic leukemia.   Dermatol Surg. 2005;31(1):38-42. doi:10.1097/00042728-200501000-00008PubMedGoogle Scholar
31.
Mehrany  K , Weenig  RH , Pittelkow  MR , Roenigk  RK , Otley  CC .  High recurrence rates of basal cell carcinoma after Mohs surgery in patients with chronic lymphocytic leukemia.   Arch Dermatol. 2004;140(8):985-988. doi:10.1001/archderm.140.8.985PubMedGoogle Scholar
32.
Shanafelt  TD , Wang  XV , Hanson  CA ,  et al.  Long-term outcomes for ibrutinib-rituximab and chemoimmunotherapy in CLL: updated results of the E1912 trial.   Blood. 2022;140(2):112-120. doi:10.1182/blood.2021014960PubMedGoogle Scholar
33.
Barr  PM , Owen  C , Robak  T ,  et al.  Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemia.   Blood Adv. 2022;6(11):3440-3450. doi:10.1182/bloodadvances.2021006434PubMedGoogle Scholar
34.
Burger  JA , Tedeschi  A , Barr  PM ,  et al; RESONATE-2 Investigators.  Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia.   N Engl J Med. 2015;373(25):2425-2437. doi:10.1056/NEJMoa1509388PubMedGoogle Scholar
35.
Moreno  C , Greil  R , Demirkan  F ,  et al.  First-line treatment of chronic lymphocytic leukemia with ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab: final analysis of the randomized, phase III iLLUMINATE trial.   Haematologica. 2022;107(9):2108-2120. doi:10.3324/haematol.2021.279012PubMedGoogle Scholar
36.
Moreno  C , Greil  R , Demirkan  F ,  et al.  Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial.   Lancet Oncol. 2019;20(1):43-56. doi:10.1016/S1470-2045(18)30788-5PubMedGoogle Scholar
37.
Shanafelt  TD , Wang  XV , Kay  NE ,  et al.  Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia.   N Engl J Med. 2019;381(5):432-443. doi:10.1056/NEJMoa1817073PubMedGoogle Scholar
38.
Woyach  JA , Ruppert  AS , Heerema  NA ,  et al.  Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL.   N Engl J Med. 2018;379(26):2517-2528. doi:10.1056/NEJMoa1812836PubMedGoogle Scholar
39.
Sharman  JP , Egyed  M , Jurczak  W ,  et al.  Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia.   Leukemia. 2022;36(4):1171-1175. doi:10.1038/s41375-021-01485-xPubMedGoogle Scholar
40.
Tam  CS , Brown  JR , Kahl  BS ,  et al.  Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): a randomised, controlled, phase 3 trial.   Lancet Oncol. 2022;23(8):1031-1043. doi:10.1016/S1470-2045(22)00293-5PubMedGoogle Scholar
41.
Al-Sawaf  O , Zhang  C , Tandon  M ,  et al.  Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial.   Lancet Oncol. 2020;21(9):1188-1200. doi:10.1016/S1470-2045(20)30443-5PubMedGoogle Scholar
42.
Kater  AP , Owen  C , Moreno  C , Follows  G , Munir  T , Levin  M-D ,  et al. Fixed-duration ibrutinib-venetoclax in patients with chronic lymphocytic leukemia and comorbidities. NEJM Evidence. Published May 13, 2022. Accessed February 22, 2023. https://evidence.nejm.org/doi/full/10.1056/EVIDoa2200006
43.
Munir  T , Brown  JR , O’Brien  S ,  et al.  Final analysis from RESONATE: up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma.   Am J Hematol. 2019;94(12):1353-1363. doi:10.1002/ajh.25638PubMedGoogle Scholar
44.
Byrd  JC , Brown  JR , O’Brien  S ,  et al; RESONATE Investigators.  Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia.   N Engl J Med. 2014;371(3):213-223. doi:10.1056/NEJMoa1400376PubMedGoogle Scholar
45.
Ghia  P , Pluta  A , Wach  M ,  et al.  ASCEND: phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia.   J Clin Oncol. 2020;38(25):2849-2861. doi:10.1200/JCO.19.03355PubMedGoogle Scholar
46.
Byrd  JC , Hillmen  P , Ghia  P ,  et al.  Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial.   J Clin Oncol. 2021;39(31):3441-3452. doi:10.1200/JCO.21.01210PubMedGoogle Scholar
47.
Brown  JR , Eichhorst  B , Hillmen  P ,  et al.  Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia.   N Engl J Med. 2023;388(4):319-332. doi:10.1056/NEJMoa2211582PubMedGoogle Scholar
48.
Furman  RR , Sharman  JP , Coutre  SE ,  et al.  Idelalisib and rituximab in relapsed chronic lymphocytic leukemia.   N Engl J Med. 2014;370(11):997-1007. doi:10.1056/NEJMoa1315226PubMedGoogle Scholar
49.
Flinn  IW , Hillmen  P , Montillo  M ,  et al.  The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL.   Blood. 2018;132(23):2446-2455. doi:10.1182/blood-2018-05-850461PubMedGoogle Scholar
50.
Seymour  JF , Kipps  TJ , Eichhorst  BF ,  et al.  Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab.   Blood. 2022;140(8):839-850. doi:10.1182/blood.2021015014PubMedGoogle Scholar
51.
Byrd  JC , Jones  JJ , Woyach  JA , Johnson  AJ , Flynn  JM .  Entering the era of targeted therapy for chronic lymphocytic leukemia: impact on the practicing clinician.   J Clin Oncol. 2014;32(27):3039-3047. doi:10.1200/JCO.2014.55.8262PubMedGoogle Scholar
52.
Woyach  JA , Ruppert  AS , Guinn  D ,  et al.  BTKC481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia.   J Clin Oncol. 2017;35(13):1437-1443. doi:10.1200/JCO.2016.70.2282PubMedGoogle Scholar
53.
Bonfiglio  S , Sutton  LA , Ljungström  V ,  et al.  BTK and PLCG2 remain unmutated in one third of patients with CLL relapsing on ibrutinib.   Blood Adv. 2023;bloodadvances.2022008821. doi:10.1182/bloodadvances.2022008821PubMedGoogle Scholar
54.
Wang  E , Mi  X , Thompson  MC ,  et al.  Mechanisms of resistance to noncovalent bruton’s tyrosine kinase inhibitors.   N Engl J Med. 2022;386(8):735-743. doi:10.1056/NEJMoa2114110PubMedGoogle Scholar
55.
Mato  AR , Nabhan  C , Thompson  MC ,  et al.  Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: a real-world analysis.   Haematologica. 2018;103(5):874-879. doi:10.3324/haematol.2017.182907PubMedGoogle Scholar
56.
Bhat  SA , Gambril  J , Azali  L ,  et al.  Ventricular arrhythmias and sudden death events following acalabrutinib initiation.   Blood. 2022;140(20):2142-2145. doi:10.1182/blood.2022016953PubMedGoogle Scholar
57.
Lampson  BL , Yu  L , Glynn  RJ ,  et al.  Ventricular arrhythmias and sudden death in patients taking ibrutinib.   Blood. 2017;129(18):2581-2584. doi:10.1182/blood-2016-10-742437PubMedGoogle Scholar
58.
Kamel  S , Horton  L , Ysebaert  L ,  et al.  Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation.   Leukemia. 2015;29(4):783-787. doi:10.1038/leu.2014.247PubMedGoogle Scholar
59.
Shouse  G , Danilova  OV , Danilov  AV .  Current status of phosphoinotiside-3 kinase inhibitors in blood cancers.   Curr Opin Oncol. 2022;34(5):540-545. doi:10.1097/CCO.0000000000000871PubMedGoogle Scholar
60.
Sharman  JP , Coutre  SE , Furman  RR ,  et al.  Final results of a randomized, phase III study of rituximab with or without idelalisib followed by open-label idelalisib in patients with relapsed chronic lymphocytic leukemia.   J Clin Oncol. 2019;37(16):1391-1402. doi:10.1200/JCO.18.01460PubMedGoogle Scholar
61.
Chong  SJF , Davids  MS .  Breaking through BCL-2 inhibition in CLL.   Blood. 2020;135(10):709-711. doi:10.1182/blood.2019004767PubMedGoogle Scholar
62.
Maloney  DG .  Anti-CD20 antibody therapy for B-cell lymphomas.   N Engl J Med. 2012;366(21):2008-2016. doi:10.1056/NEJMct1114348PubMedGoogle Scholar
63.
Kutsch  N , Bahlo  J , Robrecht  S ,  et al.  Long term follow-up data and health-related quality of life in frontline therapy of fit patients treated with FCR versus BR (CLL10 trial of the GCLLSG).   Hemasphere. 2020;4(1):e336. doi:10.1097/HS9.0000000000000336PubMedGoogle Scholar
64.
Hudon  C , Fortin  M , Vanasse  A .  Cumulative Illness Rating Scale was a reliable and valid index in a family practice context.   J Clin Epidemiol. 2005;58(6):603-608. doi:10.1016/j.jclinepi.2004.10.017PubMedGoogle Scholar
65.
Eichhorst  B , Fink  AM , Bahlo  J ,  et al; International Group of Investigators; German CLL Study Group (GCLLSG).  First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial.   Lancet Oncol. 2016;17(7):928-942. doi:10.1016/S1470-2045(16)30051-1PubMedGoogle Scholar
66.
Goede  V , Fischer  K , Engelke  A ,  et al.  Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study.   Leukemia. 2015;29(7):1602-1604. doi:10.1038/leu.2015.14PubMedGoogle Scholar
67.
Allan  JN , Shanafelt  T , Wiestner  A ,  et al.  Long-term efficacy of first-line ibrutinib treatment for chronic lymphocytic leukaemia in patients with TP53 aberrations: a pooled analysis from four clinical trials.   Br J Haematol. 2022;196(4):947-953. doi:10.1111/bjh.17984PubMedGoogle Scholar
68.
Tam  CS , Robak  T , Ghia  P , Kahl  BS , Walker  P , Janowski  W ,  et al.  Zanubrutinib monotherapy for patients with treatment naïve chronic lymphocytic leukemia and 17p deletion.   Haematologica. 2020;106(9):2354-2363.Google Scholar
69.
Fischer  K , Bahlo  J , Fink  AM ,  et al.  Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial.   Blood. 2016;127(2):208-215. doi:10.1182/blood-2015-06-651125PubMedGoogle Scholar
70.
Stilgenbauer  S , Eichhorst  B , Schetelig  J ,  et al.  Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial.   J Clin Oncol. 2018;36(19):1973-1980. doi:10.1200/JCO.2017.76.6840PubMedGoogle Scholar
71.
Jones  JA , Mato  AR , Wierda  WG ,  et al.  Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial.   Lancet Oncol. 2018;19(1):65-75. doi:10.1016/S1470-2045(17)30909-9PubMedGoogle Scholar
72.
Mato  AR , Roeker  LE , Jacobs  R ,  et al.  Assessment of the efficacy of therapies following venetoclax discontinuation in CLL reveals BTK inhibition as an effective strategy.   Clin Cancer Res. 2020;26(14):3589-3596. doi:10.1158/1078-0432.CCR-19-3815PubMedGoogle Scholar
73.
Seymour  JF , Kipps  TJ , Eichhorst  B ,  et al.  Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia.   N Engl J Med. 2018;378(12):1107-1120. doi:10.1056/NEJMoa1713976PubMedGoogle Scholar
74.
Davids  MS , Shadman  M , Parikh  SA ,  et al.  A multicenter, retrospective study of accelerated venetoclax ramp-up in patients with relapsed/refractory chronic lymphocytic leukemia.   Am J Hematol. 2022;97(3):E105-E109. doi:10.1002/ajh.26444PubMedGoogle Scholar
75.
Thompson  MC , Harrup  RA , Coombs  CC ,  et al.  Venetoclax retreatment of patients with chronic lymphocytic leukemia after a previous venetoclax-based regimen.   Blood Adv. 2022;6(15):4553-4557. doi:10.1182/bloodadvances.2022007812PubMedGoogle Scholar
76.
Coutré  SE , Barrientos  JC , Brown  JR ,  et al.  Management of adverse events associated with idelalisib treatment: expert panel opinion.   Leuk Lymphoma. 2015;56(10):2779-2786. doi:10.3109/10428194.2015.1022770PubMedGoogle Scholar
77.
Lampson  BL , Kasar  SN , Matos  TR ,  et al.  Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity.   Blood. 2016;128(2):195-203. doi:10.1182/blood-2016-03-707133PubMedGoogle Scholar
78.
Mato  AR , Shah  NN , Jurczak  W ,  et al.  Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study.   Lancet. 2021;397(10277):892-901. doi:10.1016/S0140-6736(21)00224-5PubMedGoogle Scholar
79.
Woyach  JA , Furman  RR , Liu  TM ,  et al.  Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib.   N Engl J Med. 2014;370(24):2286-2294. doi:10.1056/NEJMoa1400029PubMedGoogle Scholar
80.
Awan  FT , Schuh  A , Brown  JR ,  et al.  Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib.   Blood Adv. 2019;3(9):1553-1562. doi:10.1182/bloodadvances.2018030007PubMedGoogle Scholar
81.
Rogers  KA , Thompson  PA , Allan  JN ,  et al.  PHASE 2 study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia.   Hematol Oncol. 2019;37(S2):60-61. doi:10.3324/haematol.2020.272500PubMedGoogle Scholar
82.
Shadman  M , Flinn  IW , Levy  MY ,  et al.  Zanubrutinib in patients with previously treated B-cell malignancies intolerant of previous Bruton tyrosine kinase inhibitors in the USA: a phase 2, open-label, single-arm study.   Lancet Haematol. 2023;10(1):e35-e45. doi:10.1016/S2352-3026(22)00320-9PubMedGoogle Scholar
83.
Shadman  M , Maloney  DG .  Immune therapy for chronic lymphocytic leukemia: allogeneic transplant, chimeric antigen receptor T-cell therapy, and beyond.   Hematol Oncol Clin North Am. 2021;35(4):847-862. doi:10.1016/j.hoc.2021.03.011PubMedGoogle Scholar
84.
Roeker  LE , Dreger  P , Brown  JR ,  et al.  Allogeneic stem cell transplantation for chronic lymphocytic leukemia in the era of novel agents.   Blood Adv. 2020;4(16):3977-3989. doi:10.1182/bloodadvances.2020001956PubMedGoogle Scholar
85.
Melenhorst  JJ , Chen  GM , Wang  M ,  et al.  Decade-long leukaemia remissions with persistence of CD4+ CAR T cells.   Nature. 2022;602(7897):503-509. doi:10.1038/s41586-021-04390-6PubMedGoogle Scholar
86.
Siddiqi  T , Soumerai  JD , Dorritie  KA ,  et al.  Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL.   Blood. 2022;139(12):1794-1806. doi:10.1182/blood.2021011895PubMedGoogle Scholar
87.
Smyth  E , Eyre  TA , Cheah  CY .  Emerging therapies for the management of Richter transformation.   J Clin Oncol. 2023;41(2):395-409. doi:10.1200/JCO.22.01028PubMedGoogle Scholar
88.
Stephens  DM , Boucher  K , Kander  E ,  et al.  Hodgkin lymphoma arising in patients with chronic lymphocytic leukemia: outcomes from a large multi-center collaboration.   Haematologica. 2021;106(11):2845-2852. doi:10.3324/haematol.2020.256388PubMedGoogle Scholar
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close