[Skip to Content]
[Skip to Content Landing]

Does This Child With High Blood Pressure Have Secondary Hypertension?The Rational Clinical Examination Systematic Review

To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Which clinical findings differentiate children and adolescents with secondary hypertension from those with primary hypertension?

Findings  The clinical findings associated with secondary hypertension included age of 6 years or younger, history of prematurity at birth, family history of secondary hypertension, low body weight, microalbuminuria, serum uric acid concentration of 5.5 mg/dL or lower, and increased blood pressure load (defined as the percentage of individual blood pressure readings ≥95th percentile for sex and height) using 24-hour ambulatory blood pressure monitoring. The findings that were associated with lower likelihood of secondary hypertension included family history of any hypertension, obesity, and asymptomatic presentation. Hypertension stage, headache, and left ventricular hypertrophy did not predict primary hypertension vs secondary hypertension.

Meaning  Family history of secondary hypertension, younger age, lower body weight, and increased blood pressure load using 24-hour ambulatory blood pressure monitoring were associated with a higher likelihood of secondary hypertension. No individual sign or symptom definitively differentiates secondary hypertension from primary hypertension.

Abstract

Importance  Guidelines recommend that all children and adolescents with hypertension undergo evaluation for secondary causes. Identifying clinical factors associated with secondary hypertension may decrease unnecessary testing for those with primary hypertension.

Objective  To determine the utility of the clinical history, physical examination, and 24-hour ambulatory blood pressure monitoring for differentiating primary hypertension from secondary hypertension in children and adolescents (aged ≤21 years).

Data Sources and Study Selection  The databases of MEDLINE, PubMed Central, Embase, Web of Science, and Cochrane Library were searched from inception to January 2022 without language limits. Two authors identified studies describing clinical characteristics in children and adolescents with primary and secondary hypertension.

Data Extraction and Synthesis  For each clinical finding in each study, a 2 × 2 table was created that included the number of patients with and without the finding who had primary vs secondary hypertension. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool.

Main Outcomes and Measures  Random-effects modeling was used to calculate sensitivity, specificity, and likelihood ratios (LRs).

Results  Of 3254 unique titles and abstracts screened, 30 studies met inclusion criteria for the meta-analysis and 23 (N = 4210 children and adolescents) were used for pooling in the meta-analysis. In the 3 studies conducted at primary care clinics or school-based screening clinics, the prevalence of secondary hypertension was 9.0% (95% CI, 4.5%-15.0%). In the 20 studies conducted at subspecialty clinics, the prevalence of secondary hypertension was 44% (95% CI, 36%-53%). The demographic findings most strongly associated with secondary hypertension were family history of secondary hypertension (sensitivity, 0.46; specificity, 0.90; LR, 4.7 [95% CI, 2.9-7.6]), weight in the 10th percentile or lower for age and sex (sensitivity, 0.27; specificity, 0.94; LR, 4.5 [95% CI, 1.2-18]), history of prematurity (sensitivity range, 0.17-0.33; specificity range, 0.86-0.94; LR range, 2.3-2.8), and age of 6 years or younger (sensitivity range, 0.25-0.36; specificity range, 0.86-0.88; LR range, 2.2-2.6). Laboratory studies most associated with secondary hypertension were microalbuminuria (sensitivity, 0.13; specificity, 0.99; LR, 13 [95% CI, 3.1-53]) and serum uric acid concentration of 5.5 mg/dL or lower (sensitivity range, 0.70-0.73; specificity range, 0.65-0.89; LR range, 2.1-6.3). Increased daytime diastolic blood pressure load combined with increased nocturnal systolic blood pressure load on 24-hour ambulatory blood pressure monitoring was associated with secondary hypertension (sensitivity, 0.40; specificity, 0.82; LR, 4.8 [95% CI, 1.2-20]). Findings associated with a decreased likelihood of secondary hypertension were asymptomatic presentation (LR range, 0.19-0.36), obesity (LR, 0.34 [95% CI, 0.13-0.90]), and family history of any hypertension (LR, 0.42 [95% CI, 0.30-0.57]). Hypertension stage, headache, and left ventricular hypertrophy did not distinguish secondary from primary hypertension.

Conclusions and Relevance  Family history of secondary hypertension, younger age, lower body weight, and increased blood pressure load using 24-hour ambulatory blood pressure monitoring were associated with a higher likelihood of secondary hypertension. No individual sign or symptom definitively differentiates secondary hypertension from primary hypertension.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: James T. Nugent, MD, MPH, Clinical and Translational Research Accelerator, Temple Medical Center, 60 Temple St, Ste 6C, New Haven, CT 06510 (james.nugent@yale.edu).

Accepted for Publication: February 21, 2023.

Author Contributions: Dr Nugent had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Nugent, Saran, Wilson, Greenberg.

Acquisition, analysis, or interpretation of data: Nugent, Jiang, Funaro, Saran, Young, Ghazi, Bakhoum, Greenberg.

Drafting of the manuscript: Nugent, Funaro, Greenberg.

Critical revision of the manuscript for important intellectual content: Nugent, Jiang, Saran, Young, Ghazi, Bakhoum, Wilson, Greenberg.

Statistical analysis: Nugent.

Administrative, technical, or material support: Funaro, Saran, Young, Wilson, Greenberg.

Supervision: Bakhoum, Wilson, Greenberg.

Conflict of Interest Disclosures: Dr Wilson reported receiving grants from AstraZeneca, Vifor Pharma, and Whoop Inc. No other disclosures were reported.

References
1.
Song  P , Zhang  Y , Yu  J ,  et al.  Global prevalence of hypertension in children: a systematic review and meta-analysis.   JAMA Pediatr. 2019;173(12):1154-1163. doi:10.1001/jamapediatrics.2019.3310PubMedGoogle ScholarCrossref
2.
de Moraes  ACF , Lacerda  MB , Moreno  LA , Horta  BL , Carvalho  HB .  Prevalence of high blood pressure in 122,053 adolescents: a systematic review and meta-regression.   Medicine (Baltimore). 2014;93(27):e232. doi:10.1097/MD.0000000000000232PubMedGoogle ScholarCrossref
3.
Viera  AJ , Neutze  DM .  Diagnosis of secondary hypertension: an age-based approach.   Am Fam Physician. 2010;82(12):1471-1478.PubMedGoogle Scholar
4.
Baracco  R , Kapur  G , Mattoo  T ,  et al.  Prediction of primary vs secondary hypertension in children.   J Clin Hypertens (Greenwich). 2012;14(5):316-321. doi:10.1111/j.1751-7176.2012.00603.xPubMedGoogle ScholarCrossref
5.
Kapur  G , Ahmed  M , Pan  C , Mitsnefes  M , Chiang  M , Mattoo  TK .  Secondary hypertension in overweight and stage 1 hypertensive children: a Midwest Pediatric Nephrology Consortium report.   J Clin Hypertens (Greenwich). 2010;12(1):34-39. doi:10.1111/j.1751-7176.2009.00195.xPubMedGoogle ScholarCrossref
6.
Kumar De  A , Mookerjee  S , Guha  S , Sil  A , Das  K , Chakravorty  D .  Evaluation of sustained blood pressure elevation in children.   Indian Heart J. 2013;65(5):497-500. doi:10.1016/j.ihj.2013.08.026PubMedGoogle ScholarCrossref
7.
Wiesen  J , Adkins  M , Fortune  S ,  et al.  Evaluation of pediatric patients with mild-to-moderate hypertension: yield of diagnostic testing.   Pediatrics. 2008;122(5):e988-e993. doi:10.1542/peds.2008-0365PubMedGoogle ScholarCrossref
8.
Flynn  JT , Kaelber  DC , Baker-Smith  CM ,  et al; Subcommittee on Screening and Management of High Blood Pressure in Children.  Clinical practice guideline for screening and management of high blood pressure in children and adolescents.   Pediatrics. 2017;140(3):e20171904. doi:10.1542/peds.2017-1904PubMedGoogle ScholarCrossref
9.
Krist  AH , Davidson  KW , Mangione  CM ,  et al; US Preventive Services Task Force.  Screening for high blood pressure in children and adolescents: US Preventive Services Task Force recommendation statement.   JAMA. 2020;324(18):1878-1883. doi:10.1001/jama.2020.20122PubMedGoogle ScholarCrossref
10.
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents.  The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents.   Pediatrics. 2004;114(2)(suppl 4):555-576. doi:10.1542/peds.114.2.S2.555PubMedGoogle ScholarCrossref
11.
Flynn  J .  The changing face of pediatric hypertension in the era of the childhood obesity epidemic.   Pediatr Nephrol. 2013;28(7):1059-1066. doi:10.1007/s00467-012-2344-0PubMedGoogle ScholarCrossref
12.
Muntner  P , He  J , Cutler  JA , Wildman  RP , Whelton  PK .  Trends in blood pressure among children and adolescents.   JAMA. 2004;291(17):2107-2113. doi:10.1001/jama.291.17.2107PubMedGoogle ScholarCrossref
13.
Din-Dzietham  R , Liu  Y , Bielo  M-V , Shamsa  F .  High blood pressure trends in children and adolescents in national surveys, 1963 to 2002.   Circulation. 2007;116(13):1488-1496. doi:10.1161/CIRCULATIONAHA.106.683243PubMedGoogle ScholarCrossref
14.
Flynn  J , Zhang  Y , Solar-Yohay  S , Shi  V .  Clinical and demographic characteristics of children with hypertension.   Hypertension. 2012;60(4):1047-1054. doi:10.1161/HYPERTENSIONAHA.112.197525PubMedGoogle ScholarCrossref
15.
Gupta-Malhotra  M , Banker  A , Shete  S ,  et al.  Essential hypertension vs secondary hypertension among children.   Am J Hypertens. 2015;28(1):73-80. doi:10.1093/ajh/hpu083PubMedGoogle ScholarCrossref
16.
Arar  MY , Hogg  RJ , Arant  BS  Jr , Seikaly  MG .  Etiology of sustained hypertension in children in the southwestern United States.   Pediatr Nephrol. 1994;8(2):186-189. doi:10.1007/BF00865475PubMedGoogle ScholarCrossref
17.
Çakıcı  EK , Yazılıtaş  F , Kurt-Sukur  ED ,  et al.  Clinical assessment of primary and secondary hypertension in children and adolescents.   Arch Pediatr. 2020;27(6):286-291. doi:10.1016/j.arcped.2020.06.005PubMedGoogle ScholarCrossref
18.
Croix  B , Feig  DI .  Childhood hypertension is not a silent disease.   Pediatr Nephrol. 2006;21(4):527-532. doi:10.1007/s00467-006-0013-xPubMedGoogle ScholarCrossref
19.
Silverstein  DM , Champoux  E , Aviles  DH , Vehaskari  VM .  Treatment of primary and secondary hypertension in children.   Pediatr Nephrol. 2006;21(6):820-827. doi:10.1007/s00467-006-0087-5PubMedGoogle ScholarCrossref
20.
Wyszyńska  T , Cichocka  E , Wieteska-Klimczak  A , Jobs  K , Januszewicz  P .  A single pediatric center experience with 1025 children with hypertension.   Acta Paediatr. 1992;81(3):244-246. doi:10.1111/j.1651-2227.1992.tb12213.xPubMedGoogle ScholarCrossref
21.
Gomes  RS , Quirino  IG , Pereira  RM ,  et al.  Primary versus secondary hypertension in children followed up at an outpatient tertiary unit.   Pediatr Nephrol. 2011;26(3):441-447. doi:10.1007/s00467-010-1712-xPubMedGoogle ScholarCrossref
22.
Rames  LK , Clarke  WR , Connor  WE , Reiter  MA , Lauer  RM .  Normal blood pressure and the evaluation of sustained blood pressure elevation in childhood: the Muscatine study.   Pediatrics. 1978;61(2):245-251. doi:10.1542/peds.61.2.245PubMedGoogle ScholarCrossref
23.
Wang  Z , Shao  Y , Jin  J ,  et al.  Clinical follow-up study of 166 cases of children with hypertension.   Transl Pediatr. 2021;10(7):1834-1842. doi:10.21037/tp-20-446PubMedGoogle ScholarCrossref
24.
McInnes  MDF , Moher  D , Thombs  BD ,  et al; and the PRISMA-DTA Group.  Preferred Reporting Items for a Systematic Review and Meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement.   JAMA. 2018;319(4):388-396. doi:10.1001/jama.2017.19163PubMedGoogle ScholarCrossref
25.
Flynn  JT , Daniels  SR , Hayman  LL ,  et al; American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young.  Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association.   Hypertension. 2014;63(5):1116-1135. doi:10.1161/HYP.0000000000000007PubMedGoogle ScholarCrossref
26.
Whiting  PF , Rutjes  AW , Westwood  ME ,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the Quality Assessment of Diagnostic Accuracy Studies.   Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009PubMedGoogle ScholarCrossref
27.
Simel  DL , Rennie  D . A primer on the precision and accuracy of the clinical examination. In:  The Rational Clinical Examination: Evidence-Based Clinical Diagnosis. McGraw-Hill Education; 2009.
28.
DerSimonian  R , Laird  N .  Meta-analysis in clinical trials.   Control Clin Trials. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2PubMedGoogle ScholarCrossref
29.
Nyaga  VN , Arbyn  M , Aerts  M .  Metaprop: a Stata command to perform meta-analysis of binomial data.   Arch Public Health. 2014;72(1):39. doi:10.1186/2049-3258-72-39PubMedGoogle ScholarCrossref
30.
Harbord  RM , Deeks  JJ , Egger  M , Whiting  P , Sterne  JAC .  A unification of models for meta-analysis of diagnostic accuracy studies.   Biostatistics. 2007;8(2):239-251. doi:10.1093/biostatistics/kxl004PubMedGoogle ScholarCrossref
31.
Sweeting  MJ , Sutton  AJ , Lambert  PC .  What to add to nothing? use and avoidance of continuity corrections in meta-analysis of sparse data.   Stat Med. 2004;23(9):1351-1375. doi:10.1002/sim.1761PubMedGoogle ScholarCrossref
32.
Macaskill  PGC , Deeks  JJ , Harbord  RM , Takwoingi  Y .  Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0. Cochrane Collaboration; 2010.
33.
Greenland  S , O’Rourke  K .  On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions.   Biostatistics. 2001;2(4):463-471. doi:10.1093/biostatistics/2.4.463PubMedGoogle ScholarCrossref
34.
Higgins  JPT , Savović  J , Page  MJ , Elbers  RG , Sterne  JAC . Chapter 8: assessing risk of bias in a randomized trial. Updated February 2021. Accessed February 28, 2023. http://www.training.cochrane.org/handbook
35.
Ogborn  MR , Crocker  JF .  Investigation of pediatric hypertension: use of a tailored protocol.   AJDC. 1987;141(11):1205-1209. doi:10.1001/archpedi.1987.04460110075026PubMedGoogle ScholarCrossref
36.
Kania  PG , Frank  R , Florestan  MA , Trachtman  H .  A pediatric hypertension center: two year review of an outpatient diagnostic module.   Children’s Hosp Q. 1994;6(2):93-97.Google Scholar
37.
Robinson  RF , Batisky  DL , Hayes  JR , Nahata  MC , Mahan  JD .  Significance of heritability in primary and secondary pediatric hypertension.   Am J Hypertens. 2005;18(7):917-921. doi:10.1016/j.amjhyper.2005.01.010PubMedGoogle ScholarCrossref
38.
Robinson  RF , Batisky  DL , Hayes  JR , Nahata  MC , Mahan  JD .  Body mass index in primary and secondary pediatric hypertension.   Pediatr Nephrol. 2004;19(12):1379-1384. doi:10.1007/s00467-004-1588-8PubMedGoogle ScholarCrossref
39.
Uysal  B , Donmez  O , Uysal  F .  Hypertension in children: a single center experience.   J Hypertens Manag. 2017;3(1). doi:10.23937/2474-3690/1510027Google ScholarCrossref
40.
Marschollek  K , Marschollek  P , Ciszewska  A , Rasała  J , Zwolińska  D , Musiał  K .  Hypertension in children from a nephrological perspective—are there any differences between younger children and adolescents?   Arterial Hypertension. 2018;22(4):179-184. doi:10.5603/AH.a2018.0018Google ScholarCrossref
41.
Rasała  J , Marschollek  P , Marschollek  K , Ciszewska  A , Zwolińska  D , Musiał  K .  New methods of differentiation between primary and secondary hypertension in a pediatric population: a single-center experience.   Adv Clin Exp Med. 2020;29(11):1299-1304. doi:10.17219/acem/127425PubMedGoogle ScholarCrossref
42.
Cao  D , Chen  Y , Gao  X , Zhu  Y , Wu  D , Liu  G .  Hypertension in 172 Chinese children: an 8-year retrospective study.   J Nippon Med Sch. 2021;88(3):178-188. doi:10.1272/jnms.JNMS.2021_88-301PubMedGoogle ScholarCrossref
43.
Flynn  JT .  Differentiation between primary and secondary hypertension in children using ambulatory blood pressure monitoring.   Pediatrics. 2002;110(1 pt 1):89-93. doi:10.1542/peds.110.1.89PubMedGoogle ScholarCrossref
44.
Khan  IA , Gajaria  M , Stephens  D , Balfe  JW .  Ambulatory blood pressure monitoring in children: a large center’s experience.   Pediatr Nephrol. 2000;14(8-9):802-805. doi:10.1007/s004679900291PubMedGoogle ScholarCrossref
45.
Leisman  D , Meyers  M , Schnall  J ,  et al.  Blood pressure variability in children with primary vs secondary hypertension.   J Clin Hypertens (Greenwich). 2014;16(6):437-441. doi:10.1111/jch.12322PubMedGoogle ScholarCrossref
46.
Seeman  T , Palyzová  D , Dušek  J , Janda  J .  Reduced nocturnal blood pressure dip and sustained nighttime hypertension are specific markers of secondary hypertension.   J Pediatr. 2005;147(3):366-371. doi:10.1016/j.jpeds.2005.04.042PubMedGoogle ScholarCrossref
47.
Valent-Morić  B , Zigman  T , Zaja-Franulović  O , Malenica  M , Cuk  M .  The importance of ambulatory blood pressure monitoring in children and adolescents.   Acta Clin Croat. 2012;51(1):59-64.PubMedGoogle Scholar
48.
Környei  V , Gyódi  G , Dósa  M , Karácsony  E .  Primary and secondary hypertension in childhood [published in Hungarian].   Orv Hetil. 1981;122(14):815-821.PubMedGoogle Scholar
49.
Londe  S , Bourgoignie  JJ , Robson  AM , Goldring  D .  Hypertension in apparently normal children.   J Pediatr. 1971;78(4):569-577. doi:10.1016/S0022-3476(71)80457-2PubMedGoogle ScholarCrossref
50.
Feig  DI , Johnson  RJ .  Hyperuricemia in childhood primary hypertension.   Hypertension. 2003;42(3):247-252. doi:10.1161/01.HYP.0000085858.66548.59PubMedGoogle ScholarCrossref
51.
Stabouli  S , Chrysaidou  K , Kotsis  V ,  et al.  Central SBP and executive function in children and adolescents with primary and secondary hypertension.   J Hypertens. 2020;38(11):2176-2184. doi:10.1097/HJH.0000000000002551PubMedGoogle ScholarCrossref
52.
Langhoff  AF , Børresen  ML , Wason  MP , Jeppesen  DL , Neland  M , Cortes  D .  Characteristics of Danish children registered with and pharmacologically treated for hypertension.   Dan Med J. 2021;68(4):A08200609.PubMedGoogle Scholar
53.
Sorof  JM , Poffenbarger  T , Franco  K , Portman  R .  Evaluation of white coat hypertension in children: importance of the definitions of normal ambulatory blood pressure and the severity of casual hypertension.   Am J Hypertens. 2001;14(9 pt 1):855-860. doi:10.1016/S0895-7061(01)02180-XPubMedGoogle ScholarCrossref
54.
Sorof  JM , Portman  RJ .  White coat hypertension in children with elevated casual blood pressure.   J Pediatr. 2000;137(4):493-497. doi:10.1067/mpd.2000.108394PubMedGoogle ScholarCrossref
55.
Swartz  SJ , Srivaths  PR , Croix  B , Feig  DI .  Cost-effectiveness of ambulatory blood pressure monitoring in the initial evaluation of hypertension in children.   Pediatrics. 2008;122(6):1177-1181. doi:10.1542/peds.2007-3432PubMedGoogle ScholarCrossref
56.
Flynn  JT , Urbina  EM , Brady  TM ,  et al; Atherosclerosis, Hypertension, and Obesity in the Young Committee of the American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular Radiology and Intervention; Council on Epidemiology and Prevention; Council on Hypertension; and Council on Lifestyle and Cardiometabolic Health.  Ambulatory blood pressure monitoring in children and adolescents: 2022 update: a scientific statement from the American Heart Association.   Hypertension. 2022;79(7):e114-e124. doi:10.1161/HYP.0000000000000215PubMedGoogle ScholarCrossref
57.
Wühl  E , Witte  K , Soergel  M , Mehls  O , Schaefer  F ; German Working Group on Pediatric Hypertension.  Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions.   J Hypertens. 2002;20(10):1995-2007. doi:10.1097/00004872-200210000-00019PubMedGoogle ScholarCrossref
58.
Viera  AJ , Yano  Y , Lin  F-C ,  et al.  Does this adult patient have hypertension?: the Rational Clinical Examination Systematic Review.   JAMA. 2021;326(4):339-347. doi:10.1001/jama.2021.4533PubMedGoogle ScholarCrossref
59.
Boneparth  A , Flynn  JT .  Evaluation and treatment of hypertension in general pediatric practice.   Clin Pediatr (Phila). 2009;48(1):44-49. doi:10.1177/0009922808321677PubMedGoogle ScholarCrossref
60.
Nugent  JT , Young  C , Funaro  MC ,  et al.  Prevalence of secondary hypertension in otherwise healthy youths with a new diagnosis of hypertension: a meta-analysis.   J Pediatr. 2022;244:30-37.e10. doi:10.1016/j.jpeds.2022.01.047PubMedGoogle ScholarCrossref
61.
Hu  K , Staiano  AE .  Trends in obesity prevalence among children and adolescents aged 2 to 19 years in the US from 2011 to 2020.   JAMA Pediatr. 2022;176(10):1037-1039. doi:10.1001/jamapediatrics.2022.2052PubMedGoogle ScholarCrossref
62.
Grayson  PC , Kim  SY , LaValley  M , Choi  HK .  Hyperuricemia and incident hypertension: a systematic review and meta-analysis.   Arthritis Care Res (Hoboken). 2011;63(1):102-110. doi:10.1002/acr.20344PubMedGoogle ScholarCrossref
63.
Feig  DI , Soletsky  B , Johnson  RJ .  Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial.   JAMA. 2008;300(8):924-932. doi:10.1001/jama.300.8.924PubMedGoogle ScholarCrossref
64.
Assadi  F .  Allopurinol enhances the blood pressure lowering effect of enalapril in children with hyperuricemic essential hypertension.   J Nephrol. 2014;27(1):51-56. doi:10.1007/s40620-013-0009-0PubMedGoogle ScholarCrossref
65.
Soletsky  B , Feig  DI .  Uric acid reduction rectifies prehypertension in obese adolescents.   Hypertension. 2012;60(5):1148-1156. doi:10.1161/HYPERTENSIONAHA.112.196980PubMedGoogle ScholarCrossref
66.
Assadi  F .  Relation of left ventricular hypertrophy to microalbuminuria and C-reactive protein in children and adolescents with essential hypertension.   Pediatr Cardiol. 2008;29(3):580-584. doi:10.1007/s00246-007-9153-4PubMedGoogle ScholarCrossref
67.
Belsha  CW , Wells  TG , McNiece  KL , Seib  PM , Plummer  JK , Berry  PL .  Influence of diurnal blood pressure variations on target organ abnormalities in adolescents with mild essential hypertension.   Am J Hypertens. 1998;11(4 pt 1):410-417. doi:10.1016/S0895-7061(98)00014-4PubMedGoogle ScholarCrossref
68.
Conkar  S , Yılmaz  E , Hacıkara  Ş , Bozabalı  S , Mir  S .  Is daytime systolic load an important risk factor for target organ damage in pediatric hypertension?   J Clin Hypertens (Greenwich). 2015;17(10):760-766. doi:10.1111/jch.12608PubMedGoogle ScholarCrossref
69.
Seeman  T , Pohl  M , Palyzova  D , John  U .  Microalbuminuria in children with primary and white-coat hypertension.   Pediatr Nephrol. 2012;27(3):461-467. doi:10.1007/s00467-011-2019-2PubMedGoogle ScholarCrossref
70.
Genovese  G , Friedman  DJ , Ross  MD ,  et al.  Association of trypanolytic ApoL1 variants with kidney disease in African Americans.   Science. 2010;329(5993):841-845. doi:10.1126/science.1193032PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close