[Skip to Content]
[Skip to Content Landing]

Cervical Cancer ScreeningA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Each year in the US, approximately 100 000 people are treated for cervical precancer, 14 000 people are diagnosed with cervical cancer, and 4000 die of cervical cancer.

Observations  Essentially all cervical cancers worldwide are caused by persistent infections with one of 13 carcinogenic human papillomavirus (HPV) genotypes: 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68. HPV vaccination at ages 9 through 12 years will likely prevent more than 90% of cervical precancers and cancers. In people with a cervix aged 21 through 65 years, cervical cancer is prevented by screening for and treating cervical precancer, defined as high-grade squamous intraepithelial lesions of the cervix. High-grade lesions can progress to cervical cancer if not treated. Cervicovaginal HPV testing is 90% sensitive for detecting precancer. In the general population, the risk of precancer is less than 0.15% over 5 years following a negative HPV test result. Among people with a positive HPV test result, a combination of HPV genotyping and cervical cytology (Papanicolaou testing) can identify the risk of precancer. For people with current precancer risks of less than 4%, repeat HPV testing is recommended in 1, 3, or 5 years depending on 5-year precancer risk. For people with current precancer risks of 4% through 24%, such as those with low-grade cytology test results (atypical squamous cells of undetermined significance [ASC-US] or low-grade squamous intraepithelial lesion [LSIL]) and a positive HPV test of unknown duration, colposcopy is recommended. For patients with precancer risks of less than 25% (eg, cervical intraepithelial neoplasia grade 1 [CIN1] or histologic LSIL), treatment-related adverse effects, including possible association with preterm labor, can be reduced by repeating colposcopy to monitor for precancer and avoiding excisional treatment. For patients with current precancer risks of 25% through 59% (eg, high-grade cytology results of ASC cannot exclude high-grade lesion [ASC-H] or high-grade squamous intraepithelial lesion [HSIL] with positive HPV test results), management consists of colposcopy with biopsy or excisional treatment. For those with current precancer risks of 60% or more, such as patients with HPV-16–positive HSIL, proceeding directly to excisional treatment is preferred, but performing a colposcopy first to confirm the need for excisional treatment is acceptable. Clinical decision support tools can facilitate correct management.

Conclusions and Relevance  Approximately 100 000 people are treated for cervical precancer each year in the US to prevent cervical cancer. People with a cervix should be screened with HPV testing, and if HPV-positive, genotyping and cytology testing should be performed to assess the risk of cervical precancer and determine the need for colposcopy or treatment. HPV vaccination in adolescence will likely prevent more than 90% of cervical precancers and cancers.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: June 27, 2023.

Corresponding Author: Rebecca B. Perkins, MD, MSc, Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston Medical Center, 775 Albany St, Fourth Floor Dowling Building, Boston, MA 02118 (rbperkin@bu.edu).

Conflict of Interest Disclosures: Dr Guido reported receiving support from the ASCCP to organize the consensus guideline process cited in this article, with no direct payment for writing this article during the conduct of the study; personal fees from Inovio Pharmaceuticals for serving as a member of a data and safety monitoring board outside the submitted work. No other disclosures were reported.

References
1.
Cervix. Cancer Statistics Center. American Cancer Society. Accessed July 31, 2023. https://cancerstatisticscenter.cancer.org/?_ga=2.20975355.1746569515.1533055502-552426982.1496697483#!/cancer-site/Cervix
2.
Guan  P , Howell-Jones  R , Li  N ,  et al.  Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer.   Int J Cancer. 2012;131(10):2349-2359. doi:10.1002/ijc.27485 PubMedGoogle ScholarCrossref
3.
Mix  JM , Van Dyne  EA , Saraiya  M , Hallowell  BD , Thomas  CC .  Assessing impact of HPV vaccination on cervical cancer incidence among women aged 15-29 years in the United States, 1999-2017: an ecologic study.   Cancer Epidemiol Biomarkers Prev. 2021;30(1):30-37. doi:10.1158/1055-9965.EPI-20-0846 PubMedGoogle ScholarCrossref
4.
Lei  J , Ploner  A , Elfström  KM ,  et al.  HPV vaccination and the risk of invasive cervical cancer.   N Engl J Med. 2020;383(14):1340-1348. doi:10.1056/NEJMoa1917338 PubMedGoogle ScholarCrossref
5.
Benard  VB , Jackson  JE , Greek  A ,  et al.  A population study of screening history and diagnostic outcomes of women with invasive cervical cancer.   Cancer Med. 2021;10(12):4127-4137. doi:10.1002/cam4.3951 PubMedGoogle ScholarCrossref
6.
Kirschner  B , Poll  S , Rygaard  C , Wåhlin  A , Junge  J .  Screening history in women with cervical cancer in a Danish population-based screening program.   Gynecol Oncol. 2011;120(1):68-72. doi:10.1016/j.ygyno.2010.09.021 PubMedGoogle ScholarCrossref
7.
Lee  YW , Morgan  JR , Fiascone  S , Perkins  RB .  Underscreening, overscreening, and guideline-adherent cervical cancer screening in a national cohort.   Gynecol Oncol. 2022;162(2):181-188. doi:10.1016/j.ygyno.2022.09.012PubMedGoogle ScholarCrossref
8.
Peirson  L , Fitzpatrick-Lewis  D , Ciliska  D , Warren  R .  Screening for cervical cancer: a systematic review and meta-analysis.   Syst Rev. 2013;2:35. doi:10.1186/2046-4053-2-35 PubMedGoogle ScholarCrossref
9.
Demarco  M , Hyun  N , Carter-Pokras  O ,  et al.  A study of type-specific HPV natural history and implications for contemporary cervical cancer screening programs.   EClinicalMedicine. 2020;22:100293. doi:10.1016/j.eclinm.2020.100293 PubMedGoogle ScholarCrossref
10.
Perkins  RB , Guido  RS , Castle  PE ,  et al; 2019 ASCCP Risk-Based Management Consensus Guidelines Committee.  2019 ASCCP risk-based management consensus guidelines for abnormal cervical cancer screening tests and cancer precursors.   J Low Genit Tract Dis. 2020;24(2):102-131. doi:10.1097/LGT.0000000000000525 PubMedGoogle ScholarCrossref
11.
Cervical Cancer Screening: IARC Handbooks of Cancer Prevention. Vol 18. IARC Publications; 2022. Accessed December 23, 2022. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Handbooks-Of-Cancer-Prevention/Cervical-Cancer-Screening-2022
12.
Bouvard  V , Wentzensen  N , Mackie  A ,  et al.  The IARC perspective on cervical cancer screening.   N Engl J Med. 2021;385(20):1908-1918. doi:10.1056/NEJMsr2030640 PubMedGoogle ScholarCrossref
13.
Reich  O , Regauer  S .  Elimination of reserve cells for prevention of HPV-associated cervical cancer.   Virus Res. 2023;329:199068. doi:10.1016/j.virusres.2023.199068 PubMedGoogle ScholarCrossref
14.
Schiffman  M , Castle  PE , Jeronimo  J , Rodriguez  AC , Wacholder  S .  Human papillomavirus and cervical cancer.   Lancet. 2007;370(9590):890-907. doi:10.1016/S0140-6736(07)61416-0 PubMedGoogle ScholarCrossref
15.
de Martel  C , Plummer  M , Vignat  J , Franceschi  S .  Worldwide burden of cancer attributable to HPV by site, country and HPV type.   Int J Cancer. 2017;141(4):664-670. doi:10.1002/ijc.30716 PubMedGoogle ScholarCrossref
16.
Mendoza  RP , Haidary  T , Gabutan  E ,  et al.  Mixed and nonvaccine high risk HPV types are associated with higher mortality in Black women with cervical cancer.   Sci Rep. 2021;11(1):14064. doi:10.1038/s41598-021-93485-1 PubMedGoogle ScholarCrossref
17.
Porras  C , Tsang  SH , Herrero  R ,  et al; Costa Rica Vaccine Trial Group.  Efficacy of the bivalent HPV vaccine against HPV 16/18-associated precancer: long-term follow-up results from the Costa Rica Vaccine Trial.   Lancet Oncol. 2020;21(12):1643-1652. doi:10.1016/S1470-2045(20)30524-6 PubMedGoogle ScholarCrossref
18.
Kjaer  SK , Nygård  M , Dillner  J ,  et al.  A 12-Year follow-up on the long-term effectiveness of the quadrivalent human papillomavirus vaccine in 4 Nordic countries.   Clin Infect Dis. 2018;66(3):339-345. doi:10.1093/cid/cix797 PubMedGoogle ScholarCrossref
19.
Hammer  A , Demarco  M , Campos  N ,  et al.  A study of the risks of CIN3+ detection after multiple rounds of HPV testing: results of the 15-year cervical cancer screening experience at Kaiser Permanente Northern California.   Int J Cancer. 2020;147(6):1612-1620. doi:10.1002/ijc.32950 PubMedGoogle ScholarCrossref
20.
Malagón  T , Trottier  H , El-Zein  M , Villa  LL , Franco  EL ; Ludwig-McGill Cohort Study.  Human papillomavirus intermittence and risk factors associated with first detections and redetections in the Ludwig-McGill cohort study of adult women.   J Infect Dis. 2023;jiad043. Published online February 15, 2023. doi:10.1093/infdis/jiad043 PubMedGoogle ScholarCrossref
21.
Sahasrabuddhe  VV , Luhn  P , Wentzensen  N .  Human papillomavirus and cervical cancer: biomarkers for improved prevention efforts.   Future Microbiol. 2011;6(9):1083-1098. doi:10.2217/fmb.11.87 PubMedGoogle ScholarCrossref
22.
Clarke  MA , Gradissimo  A , Schiffman  M ,  et al.  Human papillomavirus DNA methylation as a biomarker for cervical precancer: consistency across 12 genotypes and potential impact on management of HPV-positive women.   Clin Cancer Res. 2018;24(9):2194-2202. doi:10.1158/1078-0432.CCR-17-3251 PubMedGoogle ScholarCrossref
23.
Clarke  MA , Wentzensen  N , Mirabello  L ,  et al.  Human papillomavirus DNA methylation as a potential biomarker for cervical cancer.   Cancer Epidemiol Biomarkers Prev. 2012;21(12):2125-2137. doi:10.1158/1055-9965.EPI-12-0905 PubMedGoogle ScholarCrossref
24.
Clarke  MA , Cheung  LC , Castle  PE ,  et al.  Five-year risk of cervical precancer following p16/Ki-67 dual-stain triage of HPV-positive women.   JAMA Oncol. 2019;5(2):181-186. doi:10.1001/jamaoncol.2018.4270 PubMedGoogle ScholarCrossref
25.
Wentzensen  N , Clarke  MA , Bremer  R ,  et al.  Clinical evaluation of human papillomavirus screening with p16/Ki-67 dual stain triage in a large organized cervical cancer screening program.   JAMA Intern Med. 2019;179(7):881-888. doi:10.1001/jamainternmed.2019.0306 PubMedGoogle ScholarCrossref
26.
Wright  TC  Jr , Stoler  MH , Ranger-Moore  J ,  et al.  Clinical validation of p16/Ki-67 dual-stained cytology triage of HPV-positive women: results from the IMPACT trial.   Int J Cancer. 2022;150(3):461-471. doi:10.1002/ijc.33812 PubMedGoogle ScholarCrossref
27.
Wentzensen  N , Lahrmann  B , Clarke  MA ,  et al.  Accuracy and efficiency of deep-learning-based automation of dual stain cytology in cervical cancer screening.   J Natl Cancer Inst. 2021;113(1):72-79. doi:10.1093/jnci/djaa066 PubMedGoogle ScholarCrossref
28.
Nogueira-Rodrigues  A , Ferreira  CG , Bergmann  A , de Aguiar  SS , Thuler  LCS .  Comparison of adenocarcinoma (ACA) and squamous cell carcinoma (SCC) of the uterine cervix in a sub-optimally screened cohort: a population-based epidemiologic study of 51,842 women in Brazil.   Gynecol Oncol. 2014;135(2):292-296. doi:10.1016/j.ygyno.2014.08.014 PubMedGoogle ScholarCrossref
29.
Castle  PE , Kinney  WK , Cheung  LC ,  et al.  Why does cervical cancer occur in a state-of-the-art screening program?   Gynecol Oncol. 2017;146(3):546-553. doi:10.1016/j.ygyno.2017.06.003 PubMedGoogle ScholarCrossref
30.
Demarco  M , Egemen  D , Hyun  N ,  et al.  Contribution of etiologic cofactors to CIN3+ risk among women with human papillomavirus-positive screening test results.   J Low Genit Tract Dis. 2022;26(2):127-134. doi:10.1097/LGT.0000000000000667 PubMedGoogle ScholarCrossref
31.
Saraiya  M , Cheung  LC , Soman  A ,  et al.  Risk of cervical precancer and cancer among uninsured and underserved women from 2009 to 2017.   Am J Obstet Gynecol. 2021;224(4):366.e1-366.e32. doi:10.1016/j.ajog.2020.10.001 PubMedGoogle ScholarCrossref
32.
Cohen  CM , Wentzensen  N , Castle  PE ,  et al.  Racial and ethnic disparities in cervical cancer incidence, survival, and mortality by histologic subtype.   J Clin Oncol. 2023;41(5):1059-1068. doi:10.1200/JCO.22.01424 PubMedGoogle ScholarCrossref
33.
Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. Centers for Disease Control and Prevention. Accessed October 10, 2022. https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-opportunistic-infections/human-0?view=full
34.
Clarke  MA , Fetterman  B , Cheung  LC ,  et al.  Epidemiologic evidence that excess body weight increases risk of cervical cancer by decreased detection of precancer.   J Clin Oncol. 2018;36(12):1184-1191. doi:10.1200/JCO.2017.75.3442 PubMedGoogle ScholarCrossref
35.
Wee  CC , McCarthy  EP , Davis  RB , Phillips  RS .  Screening for cervical and breast cancer: is obesity an unrecognized barrier to preventive care?   Ann Intern Med. 2000;132(9):697-704. doi:10.7326/0003-4819-132-9-200005020-00003 PubMedGoogle ScholarCrossref
36.
Oliver  SE , Unger  ER , Lewis  R ,  et al.  Prevalence of human papillomavirus among females after vaccine introduction-national health and nutrition examination survey, United States, 2003-2014.   J Infect Dis. 2017;216(5):594-603. doi:10.1093/infdis/jix244 PubMedGoogle ScholarCrossref
37.
McClung  NM , Gargano  JW , Park  IU ,  et al; HPV-IMPACT Working Group.  Estimated number of cases of high-grade cervical lesions diagnosed among women—United States, 2008 and 2016.   MMWR Morb Mortal Wkly Rep. 2019;68(15):337-343. doi:10.15585/mmwr.mm6815a1 PubMedGoogle ScholarCrossref
38.
Meites  E , Szilagyi  PG , Chesson  HW , Unger  ER , Romero  JR , Markowitz  LE .  Human papillomavirus vaccination for adults: updated recommendations of the Advisory Committee On Immunization Practices.   MMWR Morb Mortal Wkly Rep. 2019;68(32):698-702. doi:10.15585/mmwr.mm6832a3 PubMedGoogle ScholarCrossref
39.
Markowitz  LE , Dunne  EF , Saraiya  M ,  et al; Centers for Disease Control and Prevention (CDC).  Human papillomavirus vaccination: recommendations of the Advisory Committee on Immunization Practices (ACIP).   MMWR Recomm Rep. 2014;63(RR-05):1-30.PubMedGoogle Scholar
40.
Leval  A , Herweijer  E , Ploner  A ,  et al.  Quadrivalent human papillomavirus vaccine effectiveness: a Swedish national cohort study.   J Natl Cancer Inst. 2013;105(7):469-474. doi:10.1093/jnci/djt032 PubMedGoogle ScholarCrossref
41.
Laprise  JF , Chesson  HW , Markowitz  LE ,  et al.  Effectiveness and cost-effectiveness of human papillomavirus vaccination through age 45 years in the United States.   Ann Intern Med. 2020;172(1):22-29. doi:10.7326/M19-1182 PubMedGoogle ScholarCrossref
42.
Herweijer  E , Sundström  K , Ploner  A , Uhnoo  I , Sparén  P , Arnheim-Dahlström  L .  Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: a population-based study.   Int J Cancer. 2016;138(12):2867-2874. doi:10.1002/ijc.30035 PubMedGoogle ScholarCrossref
43.
Pingali  C , Yankey  D , Elam-Evans  LD ,  et al.  National vaccination coverage among adolescents aged 13-17 years—National Immunization Survey-Teen, United States, 2021.   MMWR Morb Mortal Wkly Rep. 2022;71(35):1101-1108. doi:10.15585/mmwr.mm7135a1 PubMedGoogle ScholarCrossref
44.
 ACOG committee opinion no. 557: management of acute abnormal uterine bleeding in nonpregnant reproductive-aged women.   Obstet Gynecol. 2013;121(4):891-896. doi:10.1097/01.AOG.0000428646.67925.9a PubMedGoogle ScholarCrossref
45.
ASCCP clinical practice statement: evaluation of the cervix in patients with abnormal vaginal bleeding. Published online February 2017. Accessed July 20, 2023. https://www.asccp.org/Assets/9d92e617-858f-43f3-af62-44adf76cfc67/636220616039000000/vaginal-bleeding-statement-final-02-06-17-pdf
46.
Curry  SJ , Krist  AH , Owens  DK ,  et al; US Preventive Services Task Force.  Screening for cervical cancer: US Preventive Services Task Force Recommendation Statement.   JAMA. 2018;320(7):674-686. doi:10.1001/jama.2018.10897 PubMedGoogle ScholarCrossref
47.
Schiffman  M , Kinney  WK , Cheung  LC ,  et al.  Relative performance of HPV and cytology components of cotesting in cervical screening.   J Natl Cancer Inst. 2018;110(5):501-508. doi:10.1093/jnci/djx225 PubMedGoogle ScholarCrossref
48.
Castle  PE , Kinney  WK , Xue  X ,  et al.  Effect of several negative rounds of human papillomavirus and cytology co-testing on safety against cervical cancer: an observational cohort study.   Ann Intern Med. 2018;168(1):20-29. doi:10.7326/M17-1609 PubMedGoogle ScholarCrossref
49.
Egemen  D , Cheung  LC , Chen  X ,  et al.  Risk estimates supporting the 2019 ASCCP risk-based management consensus guidelines.   J Low Genit Tract Dis. 2020;24(2):132-143. doi:10.1097/LGT.0000000000000529 PubMedGoogle ScholarCrossref
50.
Islami  F , Fedewa  SA , Jemal  A .  Trends in cervical cancer incidence rates by age, race/ethnicity, histological subtype, and stage at diagnosis in the United States.   Prev Med. 2019;123:316-323. doi:10.1016/j.ypmed.2019.04.010 PubMedGoogle ScholarCrossref
51.
Fontham  ETH , Wolf  AMD , Church  TR ,  et al.  Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society.   CA Cancer J Clin. 2020;70(5):321-346. doi:10.3322/caac.21628 PubMedGoogle ScholarCrossref
52.
Mills  JM , Morgan  JR , Dhaliwal  A , Perkins  RB .  Eligibility for cervical cancer screening exit: comparison of a national and safety net cohort.   Gynecol Oncol. 2021;162(2):308-314. doi:10.1016/j.ygyno.2021.05.035 PubMedGoogle ScholarCrossref
53.
Harper  DM , Plegue  M , Harmes  KM , Jimbo  M , SheinfeldGorin  S .  Three large scale surveys highlight the complexity of cervical cancer under-screening among women 45-65 years of age in the United States.   Prev Med. 2020;130:105880. doi:10.1016/j.ypmed.2019.105880 PubMedGoogle ScholarCrossref
54.
Feldman  S , Cook  E , Davis  M ,  et al.  Cervical cancer incidence among elderly women in Massachusetts compared with younger women.   J Low Genit Tract Dis. 2018;22(4):314-317. doi:10.1097/LGT.0000000000000435 PubMedGoogle ScholarCrossref
55.
Gravitt  PE , Landy  R , Schiffman  M .  How confident can we be in the current guidelines for exiting cervical screening?   Prev Med. 2018;114:188-192. doi:10.1016/j.ypmed.2018.07.005PubMedGoogle ScholarCrossref
56.
Castanon  A , Green  LI , Sasieni  P .  Impact of screening between the ages of 60 and 64 on cumulative rates of cervical cancer to age 84y by screening history at ages 50 to 59: a population-based case-control study.   Prev Med. 2021;149:106625. doi:10.1016/j.ypmed.2021.106625 PubMedGoogle ScholarCrossref
57.
Dinkelspiel  H , Fetterman  B , Poitras  N ,  et al.  Screening history preceding a diagnosis of cervical cancer in women age 65 and older.   Gynecol Oncol. 2012;126(2):203-206. doi:10.1016/j.ygyno.2012.04.037 PubMedGoogle ScholarCrossref
58.
Munshi  VN , Perkins  RB , Sy  S , Kim  JJ .  Cost-effectiveness analysis of the 2019 American Society for Colposcopy and Cervical Pathology risk-based management consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors.   Am J Obstet Gynecol. 2022;226(2):228.e1-228.-e9. doi:10.1016/j.ajog.2021.09.012PubMedGoogle ScholarCrossref
59.
Egemen  D , Perkins  RB , Clarke  MA ,  et al; Enduring Consensus Cervical Cancer Screening and Management Committee.  Risk-based cervical consensus guidelines: methods to determine management if less than 5 years of data are available.   J Low Genit Tract Dis. 2022;26(3):195-201. doi:10.1097/LGT.0000000000000685 PubMedGoogle ScholarCrossref
60.
Wentzensen  N , Schiffman  M , Silver  MI ,  et al.  ASCCP colposcopy standards: risk-based colposcopy practice.   J Low Genit Tract Dis. 2017;21(4):230-234. doi:10.1097/LGT.0000000000000334 PubMedGoogle ScholarCrossref
61.
Wentzensen  N , Massad  LS , Mayeaux  EJ  Jr ,  et al.  Evidence-based consensus recommendations for colposcopy practice for cervical cancer prevention in the United States.   J Low Genit Tract Dis. 2017;21(4):216-222. doi:10.1097/LGT.0000000000000322 PubMedGoogle ScholarCrossref
62.
Gage  JC , Hanson  VW , Abbey  K ,  et al; ASCUS LSIL Triage Study (ALTS) Group.  Number of cervical biopsies and sensitivity of colposcopy.   Obstet Gynecol. 2006;108(2):264-272. doi:10.1097/01.AOG.0000220505.18525.85 PubMedGoogle ScholarCrossref
63.
Wentzensen  N , Walker  JL , Gold  MA ,  et al.  Multiple biopsies and detection of cervical cancer precursors at colposcopy.   J Clin Oncol. 2015;33(1):83-89. doi:10.1200/JCO.2014.55.9948 PubMedGoogle ScholarCrossref
64.
Massad  LS , Perkins  RB , Naresh  A ,  et al.  Colposcopy standards: guidelines for endocervical curettage at colposcopy.   J Low Genit Tract Dis. 2023;27(1):97-101. doi:10.1097/LGT.0000000000000710 PubMedGoogle ScholarCrossref
65.
Davey  DD , Neal  MH , Wilbur  DC , Colgan  TJ , Styer  PE , Mody  DR .  Bethesda 2001 implementation and reporting rates: 2003 practices of participants in the College of American Pathologists Interlaboratory Comparison Program in Cervicovaginal Cytology.   Arch Pathol Lab Med. 2004;128(11):1224-1229. doi:10.5858/2004-128-1224-BIARRP PubMedGoogle ScholarCrossref
66.
Darragh  TM , Colgan  TJ , Cox  JT ,  et al; Members of LAST Project Work Groups.  The Lower Anogenital Squamous Terminology Standardization Project for HPV-Associated Lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology.   J Low Genit Tract Dis. 2012;16(3):205-242. doi:10.1097/LGT.0b013e31825c31dd PubMedGoogle ScholarCrossref
67.
Carreon  JD , Sherman  ME , Guillén  D ,  et al.  CIN2 is a much less reproducible and less valid diagnosis than CIN3: results from a histological review of population-based cervical samples.   Int J Gynecol Pathol. 2007;26(4):441-446. doi:10.1097/pgp.0b013e31805152ab PubMedGoogle ScholarCrossref
68.
Demarco  M , Egemen  D , Raine-Bennett  TR ,  et al.  A study of partial human papillomavirus genotyping in support of the 2019 ASCCP risk-based management consensus guidelines.   J Low Genit Tract Dis. 2020;24(2):144-147. doi:10.1097/LGT.0000000000000530 PubMedGoogle ScholarCrossref
69.
Werner  CL , Lo  JY , Heffernan  T , Griffith  WF , McIntire  DD , Leveno  KJ .  Loop electrosurgical excision procedure and risk of preterm birth.   Obstet Gynecol. 2010;115(3):605-608. doi:10.1097/AOG.0b013e3181d068a3 PubMedGoogle ScholarCrossref
70.
Bruinsma  FJ , Quinn  MA .  The risk of preterm birth following treatment for precancerous changes in the cervix: a systematic review and meta-analysis.   BJOG. 2011;118(9):1031-1041. doi:10.1111/j.1471-0528.2011.02944.x PubMedGoogle ScholarCrossref
71.
Conner  SN , Frey  HA , Cahill  AG , Macones  GA , Colditz  GA , Tuuli  MG .  Loop electrosurgical excision procedure and risk of preterm birth: a systematic review and meta-analysis.   Obstet Gynecol. 2014;123(4):752-761. doi:10.1097/AOG.0000000000000174 PubMedGoogle ScholarCrossref
72.
Tainio  K , Athanasiou  A , Tikkinen  KAO ,  et al.  Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and meta-analysis.   BMJ. 2018;360:k499. doi:10.1136/bmj.k499 PubMedGoogle ScholarCrossref
73.
Kylebäck  K , Ekeryd-Andalen  A , Greppe  C , Björkenfeldt Havel  C , Zhang  C , Strander  B .  Active expectancy as alternative to treatment for cervical intraepithelial neoplasia grade 2 in women aged 25 to 30 years: ExCIN2-a prospective clinical multicenter cohort study.   Am J Obstet Gynecol. 2022;227(5):742.e1-742e11. doi:10.1016/j.ajog.2022.06.051PubMedGoogle ScholarCrossref
74.
Loopik  DL , Bentley  HA , Eijgenraam  MN , IntHout  J , Bekkers  RLM , Bentley  JR .  The natural history of cervical intraepithelial neoplasia grades 1, 2, and 3: a systematic review and meta-analysis.   J Low Genit Tract Dis. 2021;25(3):221-231. doi:10.1097/LGT.0000000000000604 PubMedGoogle ScholarCrossref
75.
Greenberg  MD , Reid  R , Schiffman  M ,  et al.  A prospective study of biopsy-confirmed cervical intraepithelial neoplasia grade 1: colposcopic, cytological, and virological risk factors for progression.   J Low Genit Tract Dis. 1999;3(2):104-110. doi:10.1097/00128360-199904000-00005 PubMedGoogle ScholarCrossref
76.
D’Alessandro  P , Arduino  B , Borgo  M ,  et al.  Loop electrosurgical excision procedure versus cryotherapy in the treatment of cervical intraepithelial neoplasia: a systematic review and meta-analysis of randomized controlled trials.   Gynecol Minim Invasive Ther. 2018;7(4):145-151. doi:10.4103/GMIT.GMIT_56_18 PubMedGoogle ScholarCrossref
77.
WHO guidelines: use of cryotherapy for cervical intraepithelial neoplasia; 2011. Accessed December 2, 2019. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/44776/9789241502856_eng.pdf;jsessionid=4E43B299F3AEAD2DA5FD62809C40F101?sequence=1
78.
Papalia  N , Rohla  A , Tang  S , Nation  J , Nelson  G .  Defining the short-term disease recurrence after loop electrosurgical excision procedure (LEEP).   BMC Womens Health. 2020;20(1):34. doi:10.1186/s12905-020-00901-1 PubMedGoogle ScholarCrossref
79.
Sand  FL , Frederiksen  K , Munk  C , Jensen  SM , Kjaer  SK .  Long-term risk of cervical cancer following conization of cervical intraepithelial neoplasia grade 3—a Danish nationwide cohort study.   Int J Cancer. 2018;142(9):1759-1766. doi:10.1002/ijc.31202 PubMedGoogle ScholarCrossref
80.
Kalliala  I , Anttila  A , Pukkala  E , Nieminen  P .  Risk of cervical and other cancers after treatment of cervical intraepithelial neoplasia: retrospective cohort study.   BMJ. 2005;331(7526):1183-1185. doi:10.1136/bmj.38663.459039.7C PubMedGoogle ScholarCrossref
81.
Strander  B , Hällgren  J , Sparén  P .  Effect of ageing on cervical or vaginal cancer in Swedish women previously treated for cervical intraepithelial neoplasia grade 3: population based cohort study of long term incidence and mortality.   BMJ. 2014;348:f7361. doi:10.1136/bmj.f7361 PubMedGoogle ScholarCrossref
82.
Matz  M , Weir  HK , Alkhalawi  E , Coleman  MP , Allemani  C ; US CONCORD Working Group.  Disparities in cervical cancer survival in the United States by race and stage at diagnosis: an analysis of 138,883 women diagnosed between 2001 and 2014 (CONCORD-3).   Gynecol Oncol. 2021;163(2):305-311. doi:10.1016/j.ygyno.2021.08.015PubMedGoogle ScholarCrossref
83.
Perkins  R , Mitchell  E .  Cervical cancer disparities.   J Natl Med Assoc. 2023;115(2S):S19-S25. PubMedGoogle Scholar
84.
Garland  SM , Giuliano  A , Brotherton  J ,  et al; IPVS.  IPVS statement moving towards elimination of cervical cancer as a public health problem.   Papillomavirus Res. 2018;5:87-88. doi:10.1016/j.pvr.2018.02.003 PubMedGoogle ScholarCrossref
85.
Gultekin  M , Ramirez  PT , Broutet  N , Hutubessy  R .  World Health Organization call for action to eliminate cervical cancer globally.   Int J Gynecol Cancer. 2020;30(4):426-427. doi:10.1136/ijgc-2020-001285 PubMedGoogle ScholarCrossref
86.
Perkins  RB , Foley  S , Hassan  A ,  et al.  Impact of a multilevel quality improvement intervention using national partnerships on human papillomavirus vaccination rates.   Acad Pediatr. 2021;21(7):1134-1141. doi:10.1016/j.acap.2021.05.018 PubMedGoogle ScholarCrossref
87.
Fisher-Borne  M , Preiss  AJ , Black  M , Roberts  K , Saslow  D .  Early outcomes of a multilevel human papillomavirus vaccination pilot intervention in federally qualified health centers.   Acad Pediatr. 2018;18(2S):S79-S84. doi:10.1016/j.acap.2017.11.001 PubMedGoogle ScholarCrossref
88.
Casey  SM , Jansen  E , Drainoni  ML , Schuch  TJ , Leschly  KS , Perkins  RB .  Long-term multilevel intervention impact on human papillomavirus vaccination rates spanning the COVID-19 pandemic.   J Low Genit Tract Dis. 2022;26(1):13-19. doi:10.1097/LGT.0000000000000648 PubMedGoogle ScholarCrossref
89.
Perkins  RB , Legler  A , Jansen  E ,  et al.  Improving HPV vaccination rates: a stepped-wedge randomized trial.   Pediatrics. 2020;146(1):e20192737. doi:10.1542/peds.2019-2737 PubMedGoogle ScholarCrossref
90.
Brewer  NT , Hall  ME , Malo  TL , Gilkey  MB , Quinn  B , Lathren  C .  Announcements versus conversations to improve HPV vaccination coverage: a randomized trial.   Pediatrics. 2017;139(1):e20161764. doi:10.1542/peds.2016-1764 PubMedGoogle ScholarCrossref
91.
Efua Sackey  M , Markey  K , Grealish  A .  Healthcare professional’s promotional strategies in improving human papillomavirus (HPV) vaccination uptake in adolescents: A systematic review.   Vaccine. 2022;40(19):2656-2666. doi:10.1016/j.vaccine.2022.03.054 PubMedGoogle ScholarCrossref
92.
Closing gaps in cancer screening: connecting people, communities, and systems to improve equity and access. cervical cancer companion brief. Presidents Cancer Panel. February 2022. Accessed April 15, 2022. https://prescancerpanel.cancer.gov/report/cancerscreening/pdf/PresCancerPanel_CancerScreening_CB_Cervical_Feb2022.pdf
93.
Huguet  N , Angier  H , Rdesinski  R ,  et al.  Cervical and colorectal cancer screening prevalence before and after Affordable Care Act Medicaid expansion.   Prev Med. 2019;124:91-97. doi:10.1016/j.ypmed.2019.05.003 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close