[Skip to Content]
[Skip to Content Landing]

Neoadjuvant Immune Checkpoint Inhibitor Therapy for Localized Deficient Mismatch Repair Colorectal CancerA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Colorectal cancers (CRCs) with deficient DNA mismatch repair (dMMR) account for 15% of all CRCs. Deficient MMR is a predictive biomarker associated with responsiveness to immune checkpoint inhibitors (ICIs) in solid tumors, including CRC. The remarkable effectiveness of ICIs in metastatic CRC has led to their evaluation in the neoadjuvant and adjuvant treatment of localized disease.

Observations  Multiple prospective phase 2 studies in limited numbers of patients with localized dMMR CRC demonstrate high complete clinical and pathological response rates (60%-100%) to neoadjuvant ICIs, with low rates of grade 3 or higher ICI-related toxic effects. Given the median follow-up of 12 to 25 months in these studies, longer-term monitoring is needed to determine the durability of response and to ensure that oncologic outcomes are not compromised in patients undergoing nonoperative management. Neoadjuvant ICI therapy is especially attractive for patients with rectal cancer given the significant morbidity that accompanies pelvic irradiation and total mesorectal excision. Ongoing and planned prospective phase 2 trials will provide further data on important issues, including optimal neoadjuvant treatment duration, ICI monotherapy vs combination, and the need for adjuvant ICI therapy.

Conclusions and Relevance  While this review found that early results of neoadjuvant immunotherapy for localized dMMR CRC show high rates of major and complete pathological response, longer-term follow-up data are needed to ensure that oncologic outcomes are not compromised and are ideally improved. Neoadjuvant ICI therapy in localized dMMR CRC represents a potential paradigm shift with implications for organ preservation.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: May 9, 2023.

Published Online: September 7, 2023. doi:10.1001/jamaoncol.2023.3323

Corresponding Author: Frank A. Sinicrope, MD, Division of Medical Oncology, Mayo Clinic Alix School of Medicine, 200 First St SW, Rochester, MN 55905 (sinicrope.frank@mayo.edu).

Conflict of Interest Disclosures: Dr Sinicrope reported being an advisor to Roche Holdings AG and holding patents with Roche Tissue Diagnostics. No other disclosures were reported.

References
1.
Siegel  RL , Miller  KD , Wagle  NS , Jemal  A .  Cancer statistics, 2023.   CA Cancer J Clin. 2023;73(1):17-48. doi:10.3322/caac.21763 PubMedGoogle ScholarCrossref
2.
Sha  D , Jin  Z , Budczies  J , Kluck  K , Stenzinger  A , Sinicrope  FA .  Tumor mutational burden as a predictive biomarker in solid tumors.   Cancer Discov. 2020;10(12):1808-1825. doi:10.1158/2159-8290.CD-20-0522PubMedGoogle ScholarCrossref
3.
Sargent  DJ , Marsoni  S , Monges  G ,  et al.  Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer.   J Clin Oncol. 2010;28(20):3219-3226. doi:10.1200/JCO.2009.27.1825 PubMedGoogle ScholarCrossref
4.
Venderbosch  S , Nagtegaal  ID , Maughan  TS ,  et al.  Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies.   Clin Cancer Res. 2014;20(20):5322-5330. doi:10.1158/1078-0432.CCR-14-0332 PubMedGoogle ScholarCrossref
5.
Poynter  JN , Siegmund  KD , Weisenberger  DJ ,  et al; Colon Cancer Family Registry Investigators.  Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening.   Cancer Epidemiol Biomarkers Prev. 2008;17(11):3208-3215. doi:10.1158/1055-9965.EPI-08-0512 PubMedGoogle ScholarCrossref
6.
Win  AK , Jenkins  MA , Dowty  JG ,  et al.  Prevalence and penetrance of major genes and polygenes for colorectal cancer.   Cancer Epidemiol Biomarkers Prev. 2017;26(3):404-412. doi:10.1158/1055-9965.EPI-16-0693 PubMedGoogle ScholarCrossref
7.
Hampel  H , Frankel  WL , Martin  E ,  et al.  Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer).   N Engl J Med. 2005;352(18):1851-1860. doi:10.1056/NEJMoa043146 PubMedGoogle ScholarCrossref
8.
Toyota  M , Ahuja  N , Ohe-Toyota  M , Herman  JG , Baylin  SB , Issa  JP .  CpG island methylator phenotype in colorectal cancer.   Proc Natl Acad Sci U S A. 1999;96(15):8681-8686. doi:10.1073/pnas.96.15.8681 PubMedGoogle ScholarCrossref
9.
Cancer Genome Atlas Network.  Comprehensive molecular characterization of human colon and rectal cancer.   Nature. 2012;487(7407):330-337. doi:10.1038/nature11252 PubMedGoogle ScholarCrossref
10.
Sepulveda  AR , Hamilton  SR , Allegra  CJ ,  et al.  Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology.   J Clin Oncol. 2017;35(13):1453-1486. doi:10.1200/JCO.2016.71.9807 PubMedGoogle ScholarCrossref
11.
Sinicrope  FA .  Lynch syndrome-associated colorectal cancer.   N Engl J Med. 2018;379(8):764-773. doi:10.1056/NEJMcp1714533 PubMedGoogle ScholarCrossref
12.
Levine  AJ , Phipps  AI , Baron  JA ,  et al.  Clinicopathologic risk factor distributions for MLH1 promoter region methylation in CIMP-positive tumors.   Cancer Epidemiol Biomarkers Prev. 2016;25(1):68-75. doi:10.1158/1055-9965.EPI-15-0935 PubMedGoogle ScholarCrossref
13.
Jin  Z , Sinicrope  FA .  Prognostic and predictive values of mismatch repair deficiency in non-metastatic colorectal cancer.   Cancers (Basel). 2021;13(2):300. doi:10.3390/cancers13020300 PubMedGoogle ScholarCrossref
14.
National Comprehensive Cancer Network. Colon cancer (version 3.2022). 2022. Accessed March 10, 2023. https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
15.
National Comprehensive Cancer Network. Rectal cancer (version 4.2022). 2022. Accessed March 3, 2023. https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
16.
Cohen  R , Taieb  J , Fiskum  J ,  et al.  Microsatellite instability in patients with stage III colon cancer receiving fluoropyrimidine with or without oxaliplatin: an ACCENT pooled analysis of 12 adjuvant trials.   J Clin Oncol. 2021;39(6):642-651. doi:10.1200/JCO.20.01600 PubMedGoogle ScholarCrossref
17.
Le  DT , Uram  JN , Wang  H ,  et al.  PD-1 blockade in tumors with mismatch-repair deficiency.   N Engl J Med. 2015;372(26):2509-2520. doi:10.1056/NEJMoa1500596 PubMedGoogle ScholarCrossref
18.
Le  DT , Durham  JN , Smith  KN ,  et al.  Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.   Science. 2017;357(6349):409-413. doi:10.1126/science.aan6733 PubMedGoogle ScholarCrossref
19.
André  T , Shiu  KK , Kim  TW ,  et al; KEYNOTE-177 Investigators.  Pembrolizumab in microsatellite-instability-high advanced colorectal cancer.   N Engl J Med. 2020;383(23):2207-2218. doi:10.1056/NEJMoa2017699 PubMedGoogle ScholarCrossref
20.
Lenz  HJ , Van Cutsem  E , Luisa Limon  M ,  et al.  First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 Study.   J Clin Oncol. 2022;40(2):161-170. doi:10.1200/JCO.21.01015 PubMedGoogle ScholarCrossref
21.
Morton  D , Seymour  M , Magill  L ,  et al; FOxTROT Collaborative Group.  Preoperative chemotherapy for operable colon cancer: mature results of an international randomized controlled trial.   J Clin Oncol. 2023;41(8):1541-1552. doi:10.1200/JCO.22.00046 PubMedGoogle ScholarCrossref
22.
Cercek  A , Dos Santos Fernandes  G , Roxburgh  CS ,  et al.  Mismatch repair-deficient rectal cancer and resistance to neoadjuvant chemotherapy.   Clin Cancer Res. 2020;26(13):3271-3279. doi:10.1158/1078-0432.CCR-19-3728 PubMedGoogle ScholarCrossref
23.
Overman  MJ , McDermott  R , Leach  JL ,  et al.  Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.   Lancet Oncol. 2017;18(9):1182-1191. doi:10.1016/S1470-2045(17)30422-9 PubMedGoogle ScholarCrossref
24.
Diaz  LA  Jr , Shiu  KK , Kim  TW ,  et al; KEYNOTE-177 Investigators.  Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study.   Lancet Oncol. 2022;23(5):659-670. doi:10.1016/S1470-2045(22)00197-8 PubMedGoogle ScholarCrossref
25.
Chalabi  M , Fanchi  LF , Dijkstra  KK ,  et al.  Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers.   Nat Med. 2020;26(4):566-576. doi:10.1038/s41591-020-0805-8 PubMedGoogle ScholarCrossref
26.
Verschoor  YL , van den Berg  J , Beets  G ,  et al.  Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: final clinical analysis of the NICHE study.   J Clin Oncol. 2022;40(16)(suppl):3511. doi:10.1200/JCO.2022.40.16_suppl.3511 Google ScholarCrossref
27.
Chalabi  M .  Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: the NICHE-2 study.   Ann Oncol. 2022;33(suppl 7):S1389. doi:10.1016/j.annonc.2022.08.016 Google ScholarCrossref
28.
Hu  H , Kang  L , Zhang  J ,  et al.  Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial.   Lancet Gastroenterol Hepatol. 2022;7(1):38-48. doi:10.1016/S2468-1253(21)00348-4 PubMedGoogle ScholarCrossref
29.
Ludford  K , Ho  WJ , Thomas  JV ,  et al.  Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors.   J Clin Oncol. 2023;41(12):2181-2190. doi:10.1200/JCO.22.01351 PubMedGoogle ScholarCrossref
30.
Avallone  A , De Stefano  A , Pace  U ,  et al.  Neoadjuvant nivolumab in early stage colorectal cancer.   Ann Oncol. 2020;31(suppl 4):S449. doi:10.1016/j.annonc.2020.08.602 Google ScholarCrossref
31.
Cercek  A , Lumish  M , Sinopoli  J ,  et al.  PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer.   N Engl J Med. 2022;386(25):2363-2376. doi:10.1056/NEJMoa2201445 PubMedGoogle ScholarCrossref
32.
Yuki  S .  Short-term results of VOLTAGE-A: nivolumab monotherapy and subsequent radical surgery following preoperative chemoradiotherapy in patients with microsatellite stability and microsatellite instability-high, locally advanced rectal cancer (EPOC 1504).   Ann Oncol. 2020;31(suppl 3):S230-S231. doi:10.1016/j.annonc.2020.04.052 Google ScholarCrossref
33.
Helwick  C . “Unprecedented” 100% of first 14 untreated patients with rectal cancer respond to PD-1 blocker dostarlimab-gxly. The ASCO Post. Updated June 16, 2022. Accessed January 12, 2023. https://ascopost.com/news/june-2022/unprecedented-100-of-first-14-untreated-patients-with-rectal-cancer-respond-to-pd-1-blocker-dostarlimab-gxly/
34.
Chen  G , Wang  F , Xiao  W ,  et al.  PD1 antibody sintilimab for dMMR/MSI-H locally advanced rectal cancer: an open-label, phase 2, single-arm study (cohort A).   J Clin Oncol. 2021;39(15)(suppl):e15602. doi:10.1200/JCO.2021.39.15_suppl.e15602 Google ScholarCrossref
35.
Ciombor  KK , Hong  SC , Eng  C ,  et al.  EA2201: an ECOG-ACRIN phase II study of neoadjuvant nivolumab plus ipilimumab and short course radiation in MSI-H/dMMR rectal tumors.   J Clin Oncol. 2022;40(16)(suppl):TPS3644. doi:10.1200/JCO.2022.40.16_suppl.TPS3644 Google ScholarCrossref
36.
Shiu  KK , Seligmann  JF , Graham  J ,  et al.  NEOPRISM-CRC: neoadjuvant pembrolizumab stratified to tumor mutation burden for high-risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer.   J Clin Oncol. 2022;40(16)(suppl):TPS3645. doi:10.1200/JCO.2022.40.16_suppl.TPS3645 Google ScholarCrossref
37.
Coutzac  C , Bibeau  F , Ben Abdelghani  M ,  et al.  Immunotherapy in MSI/dMMR tumors in the perioperative setting: the IMHOTEP trial.   Dig Liver Dis. 2022;54(10):1335-1341. doi:10.1016/j.dld.2022.07.008 PubMedGoogle ScholarCrossref
38.
Response to immunotherapy in MMR-deficient localized colon cancer (RESET-C). ClinicalTrials.gov identifier: NCT05662527. Updated May 16, 2023. Accessed May 6, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT05662527
39.
Neoadjuvant envafolimab in resectable and locally advanced MSI-H/dMMR rectal cancer. ClinicalTrials.gov identifier: NCT05645094. Updated December 13, 2022. Accessed May 6, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT05645094
40.
Efficacy and safety of tislelizumab (BGB-A317) as neo-adjuvant treatment in patients with colorectal cancer. ClinicalTrials.gov identifier: NCT05116085. Updated September 15, 2022. Accessed May 6, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT05116085
41.
Pembrolizumab for locally advanced, irresectable, non-metastatic dMMR colorectal cancers (PUMA). ClinicalTrials.gov identifier: NCT05131919. Updated January 5, 2023. Accessed May 6, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT05131919
42.
Li  X , Fang  C , Wang  X , Yu  Y , Wang  Z , Qiu  M .  Neoadjuvant treatment of sintilimab plus hypofractionated radiotherapy for MSI-H/dMMR rectal cancer: a prospective, multicenter, phase Ib study.   Cancer Med. 2022;11(23):4405-4410. doi:10.1002/cam4.4720 PubMedGoogle ScholarCrossref
43.
Single arm study of neoadjuvant dostarlimab in stage II and III deficient mismatch repair colon cancers (NAIO). ClinicalTrials.gov identifier: NCT05239546. Updated March 28, 2023. Accessed May 6, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT05239546
44.
Pelly  VS , Moeini  A , Roelofsen  LM ,  et al.  Anti-inflammatory drugs remodel the tumor immune environment to enhance immune checkpoint blockade efficacy.   Cancer Discov. 2021;11(10):2602-2619. doi:10.1158/2159-8290.CD-20-1815 PubMedGoogle ScholarCrossref
45.
Oaknin  A , Gilbert  L , Tinker  AV ,  et al.  Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: interim results from GARNET-a phase I, single-arm study.   J Immunother Cancer. 2022;10(1):e003777. doi:10.1136/jitc-2021-003777 PubMedGoogle ScholarCrossref
46.
Andre  T , Braud  FGD , Jimenez-Rodriguez  B ,  et al.  Antitumor activity and safety of dostarlimab monotherapy in patients with mismatch repair deficient non-endometrial solid tumors: a post-hoc subgroup analysis of patients with colorectal cancer.   J Clin Oncol. 2022;40(4)(suppl):201. doi:10.1200/JCO.2022.40.4_suppl.201 Google ScholarCrossref
47.
US Food and Drug Administration. FDA grants accelerated approval to dostarlimab-gxly for dMMR advanced solid tumors. Updated February 1, 2022. Accessed February 21, 2023. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors
48.
US Food and Drug Administration. Meeting of the Oncologic Drugs Advisory Committee (ODAC). February 9, 2023. Accessed February 21, 2023. https://www.youtube.com/watch?v=-iHseGn2LhQ.
49.
Tsukada  Y , Bando  H , Inamori  K ,  et al.  Survival outcomes and functional results of VOLTAGE-A: preoperative chemoradiotherapy (CRT) and consolidation nivolumab (nivo) in patients (pts) with both microsatellite stable (MSS) and microsatellite instability–high (MSI-H) locally advanced rectal cancer (LARC).   J Clin Oncol. 2023;41(4)(suppl):108. doi:10.1200/JCO.2023.41.4_suppl.108 Google ScholarCrossref
50.
Xiao  BY , Zhang  X , Cao  TY ,  et al.  Neoadjuvant immunotherapy leads to major response and low recurrence in localized mismatch repair-deficient colorectal cancer.   J Natl Compr Canc Netw. 2023;21(1):60-66.e5. doi:10.6004/jnccn.2022.7060 PubMedGoogle ScholarCrossref
51.
Zhang  X , Yang  R , Wu  T ,  et al.  Efficacy and safety of neoadjuvant monoimmunotherapy with PD-1 inhibitor for dMMR/MSI-H locally advanced colorectal cancer: a single-center real-world study.   Front Immunol. 2022;13:913483. doi:10.3389/fimmu.2022.913483 PubMedGoogle ScholarCrossref
52.
Pei  F , Wu  J , Zhao  Y ,  et al.  Single-agent neoadjuvant immunotherapy with a PD-1 antibody in locally advanced mismatch repair-deficient or microsatellite instability-high colorectal cancer.   Clin Colorectal Cancer. 2023;22(1):85-91. doi:10.1016/j.clcc.2022.11.004PubMedGoogle ScholarCrossref
53.
Kothari  A , White  MG , Peacock  O ,  et al.  Pathological response following neoadjuvant immunotherapy in mismatch repair-deficient/microsatellite instability-high locally advanced, non-metastatic colorectal cancer.   Br J Surg. 2022;109(6):489-492. doi:10.1093/bjs/znac050 PubMedGoogle ScholarCrossref
54.
Kang  S , Na  Y , Joung  SY , Lee  SI , Oh  SC , Min  BW .  The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors.   Medicine (Baltimore). 2018;97(9):e0019. doi:10.1097/MD.0000000000010019 PubMedGoogle ScholarCrossref
55.
Tevis  SE , Kennedy  GD .  Postoperative complications: looking forward to a safer future.   Clin Colon Rectal Surg. 2016;29(3):246-252. doi:10.1055/s-0036-1584501 PubMedGoogle ScholarCrossref
56.
2015 European Society of Coloproctology Collaborating Group.  Predictors for anastomotic leak, postoperative complications, and mortality after right colectomy for cancer: results from an international snapshot audit.   Dis Colon Rectum. 2020;63(5):606-618. doi:10.1097/DCR.0000000000001590 PubMedGoogle ScholarCrossref
57.
Magdeburg  J , Glatz  N , Post  S , Kienle  P , Rickert  A .  Long-term functional outcome of colonic resections: how much does faecal impairment influence quality of life?   Colorectal Dis. 2016;18(11):O405-O413. doi:10.1111/codi.13526 PubMedGoogle ScholarCrossref
58.
Hendren  SK , O’Connor  BI , Liu  M ,  et al.  Prevalence of male and female sexual dysfunction is high following surgery for rectal cancer.   Ann Surg. 2005;242(2):212-223. doi:10.1097/01.sla.0000171299.43954.ce PubMedGoogle ScholarCrossref
59.
Lange  MM , Maas  CP , Marijnen  CA ,  et al; Cooperative Clinical Investigators of the Dutch Total Mesorectal Excision Trial.  Urinary dysfunction after rectal cancer treatment is mainly caused by surgery.   Br J Surg. 2008;95(8):1020-1028. doi:10.1002/bjs.6126 PubMedGoogle ScholarCrossref
60.
Bazzell  A , Madsen  LT , Dains  J .  Clinical management of bowel dysfunction after low anterior resection for rectal cancer.   J Adv Pract Oncol. 2016;7(6):618-629.PubMedGoogle Scholar
61.
Goiffon  RJ , O’Shea  A , Harisinghani  MG .  Advances in radiological staging of colorectal cancer.   Clin Radiol. 2021;76(12):879-888. doi:10.1016/j.crad.2021.06.005PubMedGoogle ScholarCrossref
62.
Bloemen  JG , Visschers  RG , Truin  W , Beets  GL , Konsten  JL .  Long-term quality of life in patients with rectal cancer: association with severe postoperative complications and presence of a stoma.   Dis Colon Rectum. 2009;52(7):1251-1258. doi:10.1007/DCR.0b013e3181a74322 PubMedGoogle ScholarCrossref
63.
Krogsgaard  M , Kristensen  HO , Furnée  EJB ,  et al.  Life with a stoma across five European countries-a cross-sectional study on long-term rectal cancer survivors.   Support Care Cancer. 2022;30(11):8969-8979. doi:10.1007/s00520-022-07293-y PubMedGoogle ScholarCrossref
64.
Garcia-Aguilar  J , Patil  S , Gollub  MJ ,  et al.  Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy.   J Clin Oncol. 2022;40(23):2546-2556. doi:10.1200/JCO.22.00032 PubMedGoogle ScholarCrossref
65.
van der Valk  MJM , Hilling  DE , Bastiaannet  E ,  et al; IWWD Consortium.  Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study.   Lancet. 2018;391(10139):2537-2545. doi:10.1016/S0140-6736(18)31078-X PubMedGoogle ScholarCrossref
66.
Sjövall  A , Blomqvist  L , Egenvall  M , Johansson  H , Martling  A .  Accuracy of preoperative T and N staging in colon cancer—a national population-based study.   Colorectal Dis. 2016;18(1):73-79. doi:10.1111/codi.13091 PubMedGoogle ScholarCrossref
67.
Ludford  K , Cohen  R , Svrcek  M ,  et al.  Pathological tumor response following immune checkpoint blockade for deficient mismatch repair advanced colorectal cancer.   J Natl Cancer Inst. 2021;113(2):208-211. doi:10.1093/jnci/djaa052 PubMedGoogle ScholarCrossref
68.
Signoroni  S , Piozzi  GN , Ricci  MT ,  et al.  Risk factors for metachronous colorectal cancer in Lynch syndrome patients: a registry-based observational mono-institutional study cohort.   Int J Clin Oncol. 2020;25(9):1644-1652. doi:10.1007/s10147-020-01700-2 PubMedGoogle ScholarCrossref
69.
Heneghan  HM , Martin  ST , Winter  DC .  Segmental vs extended colectomy in the management of hereditary nonpolyposis colorectal cancer: a systematic review and meta-analysis.   Colorectal Dis. 2015;17(5):382-389. doi:10.1111/codi.12868 PubMedGoogle ScholarCrossref
70.
Parry  S , Win  AK , Parry  B ,  et al.  Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery.   Gut. 2011;60(7):950-957. doi:10.1136/gut.2010.228056 PubMedGoogle ScholarCrossref
71.
National Comprehensive Cancer Network. Genetic/familial high-risk assessment: colorectal (version 2.2022). 2022. Accessed January 23, 2023. https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf
72.
Ghisoni  E , Wicky  A , Bouchaab  H ,  et al.  Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: an overlooked aspect in immunotherapy.   Eur J Cancer. 2021;149:153-164. doi:10.1016/j.ejca.2021.03.010 PubMedGoogle ScholarCrossref
73.
Owen  CN , Bai  X , Quah  T ,  et al.  Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma.   Ann Oncol. 2021;32(7):917-925. doi:10.1016/j.annonc.2021.03.204 PubMedGoogle ScholarCrossref
74.
Patel  SP , Othus  M , Chen  Y ,  et al.  Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma.   N Engl J Med. 2023;388(9):813-823. doi:10.1056/NEJMoa2211437 PubMedGoogle ScholarCrossref
75.
Forde  PM , Chaft  JE , Smith  KN ,  et al.  Neoadjuvant PD-1 blockade in resectable lung cancer.   N Engl J Med. 2018;378(21):1976-1986. doi:10.1056/NEJMoa1716078 PubMedGoogle ScholarCrossref
76.
Blank  CU , Rozeman  EA , Fanchi  LF ,  et al.  Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma.   Nat Med. 2018;24(11):1655-1661. doi:10.1038/s41591-018-0198-0 PubMedGoogle ScholarCrossref
77.
McGranahan  N , Furness  AJ , Rosenthal  R ,  et al.  Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.   Science. 2016;351(6280):1463-1469. doi:10.1126/science.aaf1490 PubMedGoogle ScholarCrossref
78.
Molodtsov  AK , Khatwani  N , Vella  JL ,  et al.  Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma.   Immunity. 2021;54(9):2117-2132.e7. doi:10.1016/j.immuni.2021.08.019 PubMedGoogle ScholarCrossref
79.
Rahim  MK , Okholm  TLH , Jones  KB ,  et al.  Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes.   Cell. 2023;186(6):1127-1143.e18. doi:10.1016/j.cell.2023.02.021 PubMedGoogle ScholarCrossref
80.
Felip  E , Altorki  N , Zhou  C ,  et al; IMpower010 Investigators.  Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial.   Lancet. 2021;398(10308):1344-1357. doi:10.1016/S0140-6736(21)02098-5PubMedGoogle ScholarCrossref
81.
Eggermont  AMM , Blank  CU , Mandala  M ,  et al.  Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage III melanoma: updated results from the EORTC 1325-MG/KEYNOTE-054 Trial.   J Clin Oncol. 2020;38(33):3925-3936. doi:10.1200/JCO.20.02110PubMedGoogle ScholarCrossref
82.
Sinicrope  FA , Ou  FS , Zemla  T ,  et al.  Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient mismatch repair (ATOMIC, Alliance A021502).   J Clin Oncol. 2019;37(15)(suppl):e15169. doi:10.1200/JCO.2019.37.15_suppl.e15169 Google ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close